Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GDĐT Hải Dương

Ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đáp ứng đủ tiêu chí về học lực vào học tại các trường THPT trên địa bàn tỉnh Hải Dương. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Hải Dương gồm 5 bài toán dạng tự luận, đề thi gồm 1 trang, học sinh có 120 phút để làm bài thi, đề thi có lời giải chi tiết. [ads] Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Hải Dương : + Cho hai đường thẳng (d1): y = 2x – 5 và (d2): y = 4x – m (m là tham số). Tìm tất cả các giá trị của tham số m để (d1) và (d2) cắt nhau tại một điểm trên trục hoành Ox. + Theo kế hoạch, một xưởng may phải may xong 360 bộ quần áo trong một thời gian quy định. Đến khi thực hiện, mỗi ngày xưởng đã may được nhiều hơn 4 bộ quần áo so với số bộ quần áo phải may trong một ngày theo kế hoạch. Vì thế xưởng đã hoàn thành kế hoạch trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng phải may bao nhiêu bộ quần áo? + Cho phương trình: x^2 – (2m + 1)x – 3 = 0 (m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m. Tìm các giá trị của m sao cho |x1| – |x2| = 5 và x1 < x2.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 1 năm 2022 - 2023 trường THPT Sơn Tây - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2022 – 2023 trường THPT Sơn Tây, thành phố Hà Nội. Trích dẫn đề thi thử Toán vào lớp 10 lần 1 năm 2022 – 2023 trường THPT Sơn Tây – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trạm y tế phường Trung Hưng phải tiêm xong 3500 mũi vaccine phòng Covid-19 trong một số ngày quy định. Thực tế, mỗi ngày trạm y tế đã tiêm được nhiều hơn 200 mũi vaccine so với số mũi vaccine phải tiêm trong một ngày theo kế hoạch. Vì thế trạm y tế đã tiêm xong 3500 mũi vaccine đó trước thời hạn dự định hai ngày. Hỏi thực tế, mỗi ngày trạm y tế phường Trung Hưng đã tiêm được bao nhiêu mũi vaccine? (Giả định rằng số mũi vaccine trạm y tế được trong mỗi ngày là bằng nhau). + Một chiếc lồng đèn trung thu hình trụ có chiều cao 35cm và bán kính đáy 10cm. Người ta dán giấy trang trí toàn bộ phía ngoài mặt xung quanh của lồng đèn này (trừ hai mặt đáy). Tính diện tích bề mặt được dán giấy trang trí của lồng đèn. (Bỏ qua bề dày vật liệu và lấy π ≈ 3,14). + Cho hai số thực dương a, b thỏa mãn a b 2022 2022 90. Tìm giá trị nhỏ nhất của biểu thức 2 2 P a ab b.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Nha Trang - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 18 tháng 05 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Nha Trang – Khánh Hòa : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = x + m – 1 a) Vẽ đồ thị (P). b) Tìm điều kiện của m để (d) cắt (P) tại hai điểm phân biệt. c) Gọi A và B là hai giao điểm phân biệt của (d) và (P). Tìm m sao cho |x1 − x2| = 2. + Trong đợt dịch Covid-19, học sinh hai lớp 9A và 9B tại một trường Trung học cơ sở đã ủng hộ 212 hộp khẩu trang cho những nơi cách ly tập trung. Biết rằng số học sinh lớp 9A nhiều hơn số học sinh lớp 9B là 1 học sinh và mỗi học sinh lớp 9A ủng hộ 2 hộp khẩu trang, mỗi học sinh lớp 9B ủng hộ 3 hộp khẩu trang. Tìm số học sinh của mỗi lớp. + Cho tam giác ABC nhọn nội tiếp đường tròn(O) có hai đường cao BE và CF. Hai tiếp tuyến của (O) tại B và C cắt nhau tại K. Đường thẳng AK cắt đường tròn (O) tại D. a) Chứng minh tứ giác BFEC là tứ giác nội tiếp. b) Chứng minh rằng KBD đồng dạng KAB và AB.CD = AC.BD. c) Chứng minh rằng đường thẳng AK đi qua trung điểm của EF.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường Lương Ngọc Quyến - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường Lương Ngọc Quyến – Thái Nguyên : + Hiện nay giá bán lẻ nước sạch sinh hoạt cho các hộ dân khu vực thành phố Thái Nguyên được thực hiện theo Quyết định số 383/QĐ-UBND ngày 01/02/2019 của UBND tỉnh Thái Nguyên và chia thành 4 bậc (chưa bao gồm thuế giá trị gia tăng VAT 5%) như sau: Bậc 1: Từ 01 đến 10 m3 giá 8.400đ/m3. Bậc 2: Từ 11 đến 20 m3 giá 10.500đ/m3. Bậc 3: Từ 21 đến 30 m3 giá 12.700đ/m3. Bậc 4: Từ trên 30 m3 giá 15.700đ/m3. Tổng số tiền phải nộp gồm số tiền tính theo số m3 sử dụng, 5% thuế VAT của số tiền tính theo số m3 sử dụng và phí thoát nước 1650đ/m3. a) Một gia đình tháng 3 dùng 6m3 nước.Tính số tiền phải nộp. b) Sang tháng 4, do thời tiết nắng nóng, gia đình trên sử dụng lượng nước gấp hai lần so với tháng 3. Tính số tiền phải nộp của tháng 4. + Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM. Biết AH = 3cm; HB = 4cm. Hãy tính AB AC AM và diện tích tam giác ABC. + Cho hình thang cân ABCD (AB // CD), AB = 26 cm, AD = 10 cm và đường chéo AC vuông góc với cạnh bên BC. Tính diện tích hình thang ABCD.
Đề thi thử Toán vào 10 lần 1 năm 2022 - 2023 trường Lê Quý Đôn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán 9 ôn thi vào lớp 10 lần 1 năm học 2022 – 2023 trường THCS Lê Quý Đôn, thị xã Bỉm Sơn, tỉnh Thanh Hóa; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi thử Toán vào 10 lần 1 năm 2022 – 2023 trường Lê Quý Đôn – Thanh Hóa : + Cho phương trình. a) Tìm m để phương trình có hai nghiệm phân biệt cùng dương. b) Tìm m để phương trình có hai nghiệm thỏa mãn. + Cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K bất kỳ thuộc đoạn OA (K khác O và A).Tia DK cắt đường tròn (O) tại N. a) Chứng minh rằng tứ giác OKNC nội tiếp được trong một đường tròn; b) Chứng minh rằng DK.DN = DO.DC = 2R2; c) Nối B với N cắt OC tại P. Tìm vị trí của điểm K trên đoạn OA để đạt giá trị nhỏ nhất. + Cho các số thực dương a b c. Chứng minh rằng?