Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Điện Biên

Nội dung Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Điện Biên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chung) năm 2022-2023 sở GD ĐT Điện Biên Đề thi tuyển sinh môn Toán (chung) năm 2022-2023 sở GD ĐT Điện Biên Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022-2023 của sở Giáo dục và Đào tạo Điện Biên. Kỳ thi sẽ diễn ra vào ngày ... tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (chung) năm 2022-2023 sở GD&ĐT Điện Biên: 1. Một tổ công nhân dự định may 120 kiện khẩu trang để phục vụ công tác phòng chống dịch Covid-19. Nhờ cải tiến kỹ thuật, tổ công nhân mỗi ngày làm được thêm 5 kiện so với dự định. Vì vậy, tổ công nhân đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi theo kế hoạch, mỗi ngày tổ phải làm bao nhiêu kiện khẩu trang? 2. Cho đường tròn (O) và điểm P nằm ngoài đường tròn. Kẻ hai tiếp tuyến PM, PN với đường tròn (O) (M, N là các tiếp điểm). Một đường thẳng d đi qua P cắt đường tròn (O) tại hai điểm B, C (P, B, C không thẳng hàng). Câu hỏi yêu cầu chứng minh tứ giác PMON nội tiếp, chứng minh 2PN = PB + PC và tính độ dài đoạn BC khi PB = cm, PN = cm. 3. Cho tam giác ABC vuông tại A với các đường phân giác trong BM, CN. Yêu cầu chứng minh bất đẳng thức 3MC^2 + NA^2 >= 2NB^2 + MA*NA. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT An Giang
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GD&ĐT An Giang Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GD&ĐT An Giang Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 của sở GD&ĐT An Giang bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT An Giang: Cho hàm số \( y = (\sqrt{3} - 1)x + 1 \) có đồ thị là đường thẳng d. Vẽ đồ thị d của hàm số đã cho trên mặt phẳng tọa độ. Đường thẳng d₀ song song với d và đi qua điểm có tọa độ (0;3). Đường thẳng d và d₀ cắt trục hoành lần lượt tại A và B, cắt trục tung lần lượt tại D và C. Tính diện tích tứ giác ABCD. Trên đường tròn đường kính AD lấy hai điểm B và C khác phía với AD sao cho BAC = 60◦. Từ B kẻ BE vuông góc với AC (E ∈ AC). Chứng minh rằng hai tam giác ABD và BEC đồng dạng. Biết EC = 3cm. Tính độ dài dây BD. Trên mỗi đỉnh của một đa giác có 12 cạnh người ta ghi một số, mỗi số trên một đỉnh là tổng của hai số ở hai đỉnh liền kề. Biết hai số ở hai đỉnh A5 và A9 là 10 và 9. Tìm số ở đỉnh A1.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút (không tính thời gian phát đề). Đề thi này dành cho các thí sinh muốn thi vào các lớp chuyên Toán. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn: Cho a, b là các số nguyên dương thỏa mãn a − 1 và b + 2021 đều chia hết cho 6. Chứng minh 4a + a + b chia hết cho 6. Tìm tất cả các số nguyên tố p sao cho p là ước của 5p − 2p. Tìm tất cả các số nguyên tố p và q sao cho (5p − 2p) (5p − 2p)pq là một số nguyên. Bên trong hình chữ nhật có chiều dài 101 cm và chiều rộng 20 cm cho 10101 điểm. Vẽ 10101 hình tròn có tâm là 10101 điểm đã cho và bán kính đều bằng √2 cm. Liệu có 6 điểm thuộc vào phần chung của 6 hình tròn nhận chính 6 điểm ấy làm tâm không? Tại sao? Đây là những bài toán đặc sắc đòi hỏi sự logic, khéo léo và kiến thức vững chắc trong môn Toán. Thí sinh cần phải rèn luyện kỹ năng tư duy và giải quyết vấn đề để có thể hoàn thành đề thi một cách tốt nhất.
Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Cao Bằng
Nội dung Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Cao Bằng Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng Đề tuyển sinh chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng bao gồm 01 trang với 05 bài toán dạng tự luận, học sinh có thời gian làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng: + Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x^2 và đường thẳng (d) : y = 2(m - 1)x - m^2 + 3. Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1, y1) và (x2, y2) sao cho: y1 + y2 - x1x2 - 33 = 0. + Tìm tất cả các số dương x để biểu thức Q = 3x/(x^2 - x + 1) nhận giá trị là những số nguyên. + Tìm tất cả các số tự nhiên a có bốn chữ số thỏa mãn. Khi chia a cho 80 ta được số dư là 20 và khi chia a cho 41 ta được số dư là 11. Đề tuyển sinh này đặt ra những bài toán phức tạp nhưng hấp dẫn, đòi hỏi học sinh phải có kiến thức vững và biết áp dụng lẽ logic để giải quyết. Qua đề thi này, học sinh sẽ có cơ hội thể hiện khả năng toán học của mình một cách sáng sủa và chính xác.
Đề tuyển sinh chuyên môn Toán (chung) năm 2020 2021 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chung) năm 2020 2021 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Thông tin về Đề tuyển sinh chuyên môn Toán (chung) năm 2020-2021 sở GD&ĐT Hà Nam Thông tin về Đề tuyển sinh chuyên môn Toán (chung) năm 2020-2021 sở GD&ĐT Hà Nam Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020-2021 sở GD&ĐT Hà Nam bao gồm 5 bài toán dạng tự luận trên 1 trang đề thi. Thời gian làm bài thi là 120 phút và kỳ thi sẽ diễn ra vào ngày ... tháng 07 năm 2020. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh: Cho hàm số y = ax^2 (với a khác 0) có đồ thị là parabol như hình vẽ. Hãy xác định hệ số a. Giải phương trình 12x^2 = x + m^2 (trong đó m là tham số) và chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m ∈ R. Tìm các giá trị của m để x1 = p^3 - x^3. Xét đường tròn (O) có đường kính AB cố định. Hãy chứng minh rằng tứ giác BCKH nội tiếp và tam giác AMK đồng dạng với tam giác ACM. Cho độ dài đoạn thẳng AH = a. Hãy tính AK.AC - HA.HB theo a. Xác định vị trí của điểm C để độ dài đoạn thẳng IN nhỏ nhất, trong đó I là tâm đường tròn ngoại tiếp tam giác MKC. Đề tuyển sinh này không chỉ đánh giá kiến thức Toán của thí sinh mà còn đánh giá khả năng phân tích, suy luận và trí tuệ. Hãy chuẩn bị kỹ càng và tự tin để đối mặt với thách thức này!