Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển các bài toán VD - VDC trong đề thi TN THPT 2021 môn Toán (đợt 1)

Tài liệu gồm 43 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, phát triển các bài toán mức độ vận dụng – vận dụng cao (câu 36 – 37 – 38 – 39 – 40 – 41 – 42 – 43 – 44 – 45 – 46 – 47 – 48 – 49 – 50) trong đề thi chính thức tốt nghiệp Trung học Phổ thông năm 2021 môn Toán (đợt 1) – mã đề 101, có đáp án và lời giải chi tiết. Tài liệu hữu ích dành cho các em học sinh tham dự kỳ thi tốt nghiệp THPT năm 2021 môn Toán đợt 2 và giúp quý thầy, cô giáo tham khảo trong các năm học tới. Trích dẫn tài liệu phát triển các bài toán VD – VDC trong đề thi TN THPT 2021 môn Toán (đợt 1): + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P x y z 2 2 15 0. Gọi M là điểm di động trên P N là điểm thuộc tia OM sao cho OM ON 10. Khoảng cách nhỏ nhất từ N đến mặt phẳng P bằng bao nhiêu? + Cho hai hàm số 4 2 f x x ax bx 1 và 2 g x cx dx 3 a b c d. Biết rằng đồ thị của hàm số y f x và y g x cắt nhau tại hai điểm có hoành độ lần lượt là -2 và 1. Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng? + Trong tập số phức, cho phương trình 2 2 2 2 1 3 2 0 z m z m m m. Có bao nhiêu giá trị nguyên của m trong đoạn 0 2021 để phương trình có 2 nghiệm phân biệt 1 2 z z thỏa mãn 1 2 z z? + Cho hình trụ đứng có hai đáy là hai đường tròn tâm O và tâm O’, bán kính bằng a, chiều cao hình trụ bằng 2a. Mặt phẳng đi qua trung điểm OO’ và tạo với OO’ một góc 30 độ, cắt đường tròn đáy tâm O theo dây cung AB. Độ dài đoạn AB là? + Với mọi số thực a, b, c thỏa mãn log 2log 3log 1 1 3 a b c 3 27 khẳng định đúng là?

Nguồn: toanmath.com

Đọc Sách

Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán
Tài liệu “Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán” của nhóm tác giả Nguyễn Phú Khánh, Võ Bá Quốc Cẩn và Trần Quốc Anh hi vọng sẽ mang đến cho bạn đọc những kinh nghiệm quý báu trong việc trình bày các bài toán trong đề thi Quốc gia hiện nay. Tài liệu được scan từ sách gốc, dày 271 trang. [ads]
Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa
Nội dung Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT Quốc Gia 2022 môn ToánMục lục: Tài liệu ôn thi THPT Quốc Gia 2022 môn Toán Tài liệu này bao gồm 255 trang, được biên soạn bởi Thạc sĩ Toán học Nguyễn Hữu Chung Kiên. Tài liệu được chia thành 28 chuyên đề, mỗi chuyên đề đi theo cấu trúc của 50 câu trắc nghiệm. Ngoài ra, tài liệu còn bao gồm 10 đề thi chuẩn theo cấu trúc đề minh họa môn Toán năm 2022 của Bộ Giáo dục và Đào tạo, cùng với 5 đề thi thử THPT môn Toán từ các trường THPT và Sở Giáo dục và Đào tạo trên cả nước. Mục lục: 1. Hoán vị, chỉnh hợp, tổ hợp 2. Cấp số cộng – Cấp số nhân 3. Xác suất của biến cố 4. Đọc bảng biến thiên, đồ thị 5. Tìm GTLN – GTNN của hàm số trên đoạn 6. Tiệm cận của đồ thị hàm số 7. Khảo sát, nhận dạng hàm số, đồ thị 8. Hàm số lũy thừa, mũ, logarit 9. Phương trình – bất phương trình mũ, logarit 10. Công thức tính nguyên hàm cơ bản 11. Sử dụng tích chất của tích phân 12. Số phức 13. Góc 14. Khoảng cách 15. Thể tích khối đa diện 16. Khối nón 17. Khối trụ 18. Khối cầu 19. Phương pháp tọa độ trong không gian 20. Phương trình mặt phẳng 21. Phương trình đường thẳng 22. Giá trị nguyên thỏa biểu thức mũ, logarit – Vận dụng 23. Phương trình hàm hợp – Vận dụng 24. Max – min số phức – Vận dụng 25. Diện tích hình phẳng – Vận dụng 26. Phương pháp tọa độ trong không gian – Vận dụng 27. Cực trị hàm ẩn – hàm hợp – Vận dụng 28. Hàm đặc trưng 29. Đề thi THPT Quốc Gia 2021 − Lần 2 30. Phát triển đề minh họa 2022 − Đề 1 31. Phát triển đề minh họa 2022 − Đề 2 32. Phát triển đề minh họa 2022 − Đề 3 33. Phát triển đề minh họa 2022 − Đề 4 34. Phát triển đề minh họa 2022 − Đề 5 35. Phát triển đề minh họa 2022 − Đề 6 36. Phát triển đề minh họa 2022 − Đề 7 37. Phát triển đề minh họa 2022 − Đề 8 38. Phát triển đề minh họa 2022 − Đề 9 39. Phát triển đề minh họa 2022 − Đề 10 40. Đề thi thử Sở Giáo dục Hưng Yên 41. Đề thi thử Sở Giáo dục Bà Rịa − Vũng Tàu 42. Đề thi thử Sở Giáo dục Vĩnh Phúc 43. Đề thi thử Sở Giáo dục Hạ Long 44. Đề thi thử Chuyên ĐHSP Hà Nội
Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán
Nội dung Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán Bản PDF Nội dung tài liệu phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán đến từ trường THPT An Phước, tỉnh Ninh Thuận, gồm 87 trang, được biên soạn bởi tập thể quý thầy, cô giáo. Tài liệu này hướng dẫn chi tiết phân tích các câu hỏi trong đề minh họa của Bộ Giáo dục 2022.Trong phần 1 của tài liệu, có phần MA TRẬN ĐỀ MINH HỌA BỘ GIÁO DỤC 2022, trong đó có khung ma trận và bảng mô tả chi tiết nội dung câu hỏi. Các câu hỏi bao gồm các nội dung như xác định số phức cơ bản, phương trình mặt cầu, bài toán sử dụng định nghĩa và tính chất, tính thể tích khối đa diện, tập xác định của hàm số, phương trình cơ bản, đạo hàm, tích phân cơ bản, biểu diễn hình học của số phức, xác định các đường tiệm cận của hàm số, bất phương trình cơ bản, và nhiều nội dung khác.Phần 2 của tài liệu là PHÂN TÍCH ĐỀ MINH HỌA BỘ GIÁO DỤC 2022, trong đó tập trung vào phân tích chi tiết từng câu hỏi trong đề minh họa. Cung cấp cách giải và lý giải rõ ràng, dễ hiểu giúp học sinh hiểu rõ hơn và áp dụng vào bài tập.Phần 3 của tài liệu là BÀI TẬP CHO HỌC SINH RÈN LUYỆN, cung cấp các bài tập để học sinh ôn tập và rèn luyện kỹ năng giải bài tập, áp dụng kiến thức đã học.Tài liệu này là nguồn tư liệu hữu ích để học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT, giúp họ nắm vững kiến thức, rèn luyện kỹ năng giải bài tập một cách hiệu quả. Đồng thời, tài liệu cũng là sản phẩm nỗ lực và sự chuyên nghiệp của đội ngũ giáo viên trường THPT An Phước, tỉnh Ninh Thuận.
Phát triển đề minh họa ôn thi TN THPT 2022 môn Toán
Nội dung Phát triển đề minh họa ôn thi TN THPT 2022 môn Toán Bản PDF - Nội dung bài viết Phát triển bộ đề minh họa ôn thi TN THPT 2022 môn Toán Phát triển bộ đề minh họa ôn thi TN THPT 2022 môn Toán Bộ tài liệu bao gồm 57 trang, được chọn lọc cẩn thận từ 367 câu hỏi và bài toán trắc nghiệm có cùng định dạng. Đây là công cụ hữu ích giúp học sinh ôn thi hiệu quả, với nhiều mức độ khó khác nhau, phù hợp với các mục tiêu ôn tập của mỗi học sinh.