Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa

Nội dung Đề thi HSG huyện lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT Hà Trung Thanh Hóa Đề thi HSG huyện lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT Hà Trung Thanh Hóa Vào ngày Thứ Sáu, 09 tháng 04 năm 2021, Phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa đã tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 8 cấp huyện trong năm học 2020-2021. Đề thi Học Sinh Giỏi huyện môn Toán lớp 8 năm 2020-2021 của phòng GD&ĐT Hà Trung - Thanh Hóa bao gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Sau đây là một số câu hỏi trích dẫn từ đề thi HSG huyện Toán lớp 8 năm 2020-2021 phòng GD&ĐT Hà Trung - Thanh Hóa: Câu 1: Trong tam giác đều ABC, gọi O là trung điểm của cạnh BC. Chúng ta lấy các điểm di động M trên cạnh AB và N trên cạnh AC sao cho góc MON = 60 độ. Hãy chứng minh rằng: OMB đồng dạng với ONC, và suy ra tích BM.CN không đổi. Các tia MO, NO là tia phân giác của góc BMN và CNM. Chu vi tam giác AMN không đổi. Câu 2: Xác định đa thức f(x) biết: f(x) chia hết cho x - 1 dư 4; chia hết cho x + 2 dư 1, và chia cho x^2 + x - 2 được thương là 5x. Câu 3: Tìm số tự nhiên k sao cho k số chính phương. Đề thi này không chỉ giúp học sinh rèn luyện kiến thức mà còn khuyến khích sự sáng tạo và tư duy logic trong việc giải quyết các bài toán toán học.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 8 năm 2020 - 2021 phòng GDĐT thành phố Vinh - Nghệ An
Ngày … tháng 04 năm 2021, phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2020 – 2021. Đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT thành phố Vinh – Nghệ An : + Chứng minh rằng: 11^100 – 1 chia hết cho 1000. + Biết đa thức f(x) chia cho đa thức x – 2 dư 7, chia cho đa thức x^2 + 1 dư 3x + 5. Tìm dư trong phép chia đa thức f(x) cho đa thức (x2 + 1)(x – 2). + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC ở E. a. Chứng minh rằng tam giác BEC đồng dạng với tam giác ADC. b. Gọi M là trung điểm của BE. Chứng minh rằng BM.BE = BC.BH. Tính số đo góc AHM. c. Tia AM cắt BC tại G. Chứng minh rằng GB.AH + GB.HC = BC.HD.
Đề thi Olympic Toán 8 cấp huyện năm 2020 - 2021 phòng GDĐT Ba Vì - Hà Nội
Thứ Năm ngày 22 tháng 04 năm 2021, phòng GD&ĐT huyện Ba Vì, thành phố Hà Nội tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội : + Tìm các số nguyên x, y thỏa mãn: xy – 4 = 2x + 3y. + Tìm các số nguyên x sao cho A = x(x – 1)(x – 7)(x – 8) là một số chính phương. + Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.
Đề thi Olimpic Toán 8 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội. Trích dẫn đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết cho 48. + Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Hãy chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Tính các tỷ số.
Đề thi Olympic Toán 8 năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Đề thi Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2021.