Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số bậc nhất

Nội dung Chuyên đề hàm số bậc nhất Bản PDF - Nội dung bài viết Chuyên đề hàm số bậc nhất Chuyên đề hàm số bậc nhất Tài liệu này bao gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức quan trọng về hàm số bậc nhất và cung cấp hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề này. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 2. Tóm tắt lý thuyết 1. Hàm số bậc nhất: Được biểu diễn bởi công thức y = ax + b với a, b là các số đã biết và a khác 0. 2. Các tính chất của hàm số bậc nhất: Hàm số bậc nhất xác định trên toàn bộ tập số thực. Nó đồng biến khi a > 0 và nghịch biến khi a < 0. Các dạng bài minh họa Dạng 1: Tính giá trị của hàm số tại một điểm, giúp xác định toạ độ của điểm trên đồ thị một cách nhanh chóng. Dạng 2: Vẽ đồ thị hàm bậc nhất theo các bước đã học. Dạng 3: Nhận dạng hàm số bậc nhất dựa vào định nghĩa. Dạng 4: Xét tính đồng biến và nghịch biến của hàm số bậc nhất, thông qua giá trị của a. Dạng 5: Bài toán thực tế liên quan đến hàm số bậc nhất. Trắc nghiệm rèn luyện phản xạ và phiếu bài tự luyện Bao gồm các dạng bài như nhận biết khái niệm hàm số, tính giá trị của hàm số, tìm điều kiện xác định của hàm số và vẽ đồ thị hàm số. Đây là tài liệu hữu ích để học sinh nắm vững kiến thức về hàm số bậc nhất và cải thiện kỹ năng giải bài tập trong chương trình Đại số.

Nguồn: sytu.vn

Đọc Sách

Hàm số, đồ thị và sự tương giao - Dương Minh Hùng
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề hàm số, đồ thị và sự tương giao, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết I. Hàm số bậc nhất 1. Khái niệm hàm số bậc nhất. 2. Tính chất. 3. Đồ thị của hàm số y = ax + b (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 5. Vị trí tương đối của hai đường thẳng. 6. Hệ số góc của đường thẳng y = ax + b. 7. Một số phương trình đường thẳng đặc biệt. II. Hàm số bậc hai 1. Khái niệm hàm số bậc hai. 2. Tính chất 3. Đồ thị của hàm số y = ax2 (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax2 (a khác 0). 5. Quan hệ giữa Parabol y = ax2 (a khác 0) và đường thẳng y = mx + n (m khác  0). B. Phân dạng toán cơ bản Dạng toán 1. Vẽ đồ thị hàm số. Dạng toán 2. Tìm tọa độ giao điểm của đường thẳng và Parabol. Dạng toán 3. Tìm phương trình đường thẳng, phương trình Parabol. Dạng toán 4. Tìm điều kiện của tham số m thỏa mãn yêu cầu cho trước. C. Bài tập rèn luyện
Phương trình bậc hai, hệ thức Vi-ét và ứng dụng - Dương Minh Hùng
Tài liệu gồm 26 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề phương trình bậc hai, hệ thức Vi-ét và ứng dụng, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Công thức nghiệm. 2. Công thức nghiệm thu gọn. 3. Định lí Vi-ét. 4. Ứng dụng Vi-ét (nhẫm nghiệm đặc biệt của phương trình bậc hai). 5. Các ứng dụng vào giải toán chứa tham số. B. Phân dạng toán cơ bản Dạng 1. Giải phương trình quy về bậc nhất. Dạng 2. Giải phương trình bậc hai. Dạng 3. Tính giá trị biểu thức nghiệm dùng Vi-ét. Dạng 4. Toán tham số m với ứng dụng định lý Vi-ét. C. Bài tập rèn luyện
Các phép toán về căn thức - Dương Minh Hùng
Tài liệu gồm 19 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề căn thức, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Căn bậc hai số học. 2. Liên hệ giữa phép nhân với phép khai phương. 3. Liên hệ giữa phép chia với phép khai phương. 4. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. B. Phân dạng toán cơ bản Dạng 1. Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Dạng 2. Tính giá trị biểu thức chứa căn. Dạng 3. Rút gọn biểu thức chứa căn. Dạng 4. Rút gọn và tính giá trị biểu thức chứa căn. C. Bài tập rèn luyện
Phương pháp giải các dạng toán căn bậc hai, căn bậc ba
Tài liệu gồm 54 trang, tóm tắt kiến thức trọng tâm và hướng dẫn phương pháp giải các dạng toán căn bậc hai, căn bậc ba, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 phần Đại số chương 1. Bài 1 . Căn bậc hai. Bài 2 . Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. + Dạng 1. Tìm căn bậc hai số học của một số. + Dạng 2. So sánh các căn bậc hai số học. + Dạng 3. Giải phương trình, bất phương trình. + Dạng 4. Tìm điều kiện để √A có nghĩa. + Dạng 5. Rút gọn biểu thức dạng √A^2. Bài 3 . Liên hệ giữa phép nhân và phép khai phương. + Dạng 1. Khai phương một tích. + Dạng 2. Nhân các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Biến đổi một biểu thức về dạng tích. + Dạng 5. Giải phương trình. + Dạng 6. Chứng minh bất đẳng thức. Bài 4 . Liên hệ giữa phép chia và phép khai phương. + Dạng 1. Khai phương một thương. + Dạng 2. Chia các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Giải phương trình. Bài 5 . Bảng căn bậc hai. Bài 6 – Bài 7 . Biến đổi đơn giản biểu thức chứa căn thức bậc hai. + Dạng 1. Đưa thừa số ra ngoài dấu căn. + Dạng 2. Đưa thừa số vào trong dấu căn. + Dạng 3. Khử mẫu của biểu thức lấy căn. + Dạng 4. Trục căn thức ở mẫu. + Dạng 5. So sánh hai số. + Dạng 6. Rút gọn biểu thức. Bài 8 . Rút gọn biểu thức chứa căn thức bậc hai. + Dạng 1. Rút gọn biểu thức chỉ có cộng, trừ căn thức. + Dạng 2. Rút gọn biểu thức có chứa các phép cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. + Dạng 3. Rút gọn rồi tính giá trị của biểu thức hoặc rút gọn rồi tìm giá trị của biểu thức để biểu thức có một giá trị nào đó. + Dạng 4. Rút gọn biểu thức rồi chứng minh biểu thức có một tính chất nào đó hoặc tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Dạng 5. Chứng minh đẳng thức. Bài 9 . Căn bậc ba. + Dạng 1. Tìm căn bậc ba của một số. + Dạng 2. So sánh. + Dạng 3. Thực hiện các phép tính. + Dạng 4. Giải phương trình.