Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Thái Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo tỉnh Thái Bình; đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày … tháng 12 năm 2022. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Thái Bình : + Trên mặt phẳng tọa độ Oxy cho điểm M(1;2) và đường thẳng (d): y = ax + b (với a > 0). Tìm a, b để đường thẳng (d) đi qua điểm M và cắt các trục tọa độ Ox, Oy lần lượt tại hai điểm A, B (A, B khác gốc tọa độ) thỏa mãn: 12.OA + 5.OB = 13.AB b) Chứng minh rằng không tồn tại đa thức f(x) có các hệ số nguyên, đồng thời thỏa mãn: f(16) = 2022 và f(3) = 2. + Cho tứ giác lồi ABCD. Lấy điểm M bất kỳ trên đường chéo AC. Qua M kẻ MP song song với AB; MQ song song với CD (P thuộc BC; Q thuộc AD). Chứng minh rằng : 1/(MP² + MQ²) =< 1/AB² + 1/CD². Khi 1/(MP² + MQ²) = 1/AB² + 1/CD², tính độ dài đoạn thẳng CM theo độ dài các đoạn thẳng AB, AC, CD. + Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn, vẽ các tiếp tuyến MA, MB (A, B là các tiếp điểm). Lấy điểm N nằm trên đường tròn và thuộc miền trong của tam giác AMB (N khác A, B). Vẽ tiếp tuyến với đường tròn (O;R) tại điểm N cắt MA, MB thứ tự tại P, Q. Đoạn thẳng AB cắt đoạn thẳng OP tại E; cắt đoạn thẳng OQ tại F. Chứng minh rằng: AE.BF = PN.NQ.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic Toán 9 lần 1 năm 2023 - 2024 trường THPT chuyên Lê Quý Đôn - Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic môn Toán 9 lần thứ nhất năm học 2023 – 2024 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2024. Trích dẫn Đề Olympic Toán 9 lần 1 năm 2023 – 2024 trường THPT chuyên Lê Quý Đôn – Điện Biên : + Cho phương trình: x2 + mx + 2m – 7 = 0 (1) (ẩn x) với m là tham số nguyên. a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1, x2; tìm m để 9×1 = x22. b) Chứng minh rằng m là số nguyên lẻ thì phương trình (1) không có nghiệm hữu tỉ. + Cho tam giác nhọn ABC (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a) Chứng minh AEF ~ ABC. b) Chứng minh IP = IQ. c) Gọi M là trung điểm của AH. Chứng minh I là trực tâm của tam giác BMC.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2024.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) có ba đường cao AD, BE, CF đồng quy tại H. Đường tròn đường kính AC cắt đoạn thẳng BH tại M. Trên đoạn thẳng HC lấy điểm N sao cho AM = AN. a) Chứng minh EB.EH = ED.EF. b) Chứng minh N thuộc đường tròn ngoại tiếp tam giác ABD. + Cho tam giác nhọn ABC (AB < AC) có hai đường cao AE, BD cắt nhau tại H. Đường trung trực của đoạn thẳng DH cắt AE tại M, cắt đường tròn ngoại tiếp tam giác BCD tại P và Q (P nằm giữa M và Q). a) Chứng minh MD là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD. b) Chứng minh APM + AQM = CBD. c) Đường thẳng AQ cắt đường tròn ngoại tiếp tam giác BCD tại F (F khác Q). Chứng minh APB = FPB. + Cho p là số nguyên tố. Tìm tất cả các số nguyên dương b sao cho nghiệm của phương trình bậc hai x2 – bx + bp = 0 là số nguyên.