Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 vòng 3 năm 2023 - 2024 trường THCS Tân Thành - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 vòng 3 năm học 2023 – 2024 trường THCS Tân Thành, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi HSG Toán 9 vòng 3 năm 2023 – 2024 trường THCS Tân Thành – Nghệ An : + Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. a) Chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. b) Chứng minh BH = AC.cotABC. c) Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng: MP MQ. + Trong một buổi gặp mặt có 294 người tham gia, những người tham gia, những người quen nhau bắt tay nhau. Biết nếu A bắt tay B thì một trong hai người A và B bắt tay không quá 6 lần. Hỏi có nhiều nhất bao nhiêu cái bắt tay. + Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Nghi Thủy Nghệ An
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Nghi Thủy Nghệ An Bản PDF - Nội dung bài viết Đề thi học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 trường THCS Nghi Thủy Đề thi học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 trường THCS Nghi Thủy Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Nghi Thủy, huyện Cửa Lò, tỉnh Nghệ An. Đề thi được thiết kế để thử thách và đánh giá năng lực, kiến thức của các em học sinh trên môn Toán, từ đó khuyến khích sự rèn luyện và phát triển năng khiếu Toán học một cách toàn diện. Bài thi sẽ cung cấp cơ hội cho các em học sinh thể hiện khả năng giải quyết vấn đề, tư duy logic và sự sáng tạo. Hy vọng đây sẽ là bước đệm quan trọng để khám phá và phát triển tiềm năng Toán học trong mỗi em học sinh.
Đề chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An
Nội dung Đề chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Đề chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Chào quý thầy, cô và các em học sinh lớp 9! Đây là đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào ngày 12 tháng 10 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 của phòng GD&ĐT Tân Kỳ – Nghệ An: Tìm số tự nhiên n sao cho n² + 2022 là số chính phương. Cho a, b, c là các số nguyên khác 0 thỏa mãn điều kiện: (1/a + 1/b + 1/c)² = 1/a² + 1/b² + 1/c². Chứng minh rằng: a³ + b³ + c³ chia hết cho 3. Cho tam giác ABC nhọn và điểm P nằm trong tam giác đó. Chứng minh khoảng cách lớn nhất trong các khoảng cách từ P tới ba đỉnh của tam giác không nhỏ hơn hai lần khoảng cách bé nhất trong các khoảng cách từ điểm P đến các cạnh của tam giác đó. Hy vọng rằng các em sẽ cố gắng và đạt kết quả tốt trong kỳ thi sắp tới. Chúc các em học tốt và thành công!
Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 liên trường THCS huyện Diễn Châu Nghệ An
Nội dung Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 liên trường THCS huyện Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 1 năm 2022 – 2023 Đề HSG Toán lớp 9 vòng 1 năm 2022 – 2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp trường vòng 1 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn một số câu hỏi từ đề thi: + Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức x² – 4x – 5, biết f(x) khi chia cho x – 5 được số dư 14 và khi chia cho x + 1 được số dư 2. + Chứng minh rằng tam giác ABC có trọng tâm G, khi vẽ đường thẳng d cắt các cạnh AB, AC thì tổng AB + AC + AD + AE có giá trị không đổi khi đường thẳng d thay đổi vị trí. + Chứng minh rằng trong tam giác nhọn ABC, có đường cao AD, BE, CF cắt nhau tại H, ta có: EF // BC với A cos và 2AH = 4IK = IM. Các em hãy tự tin và chuẩn bị tốt cho bài thi sắp tới. Chúc các em thành công!
Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Chào mừng đến với đề khảo sát chất lượng cho đội tuyển học sinh giỏi môn Toán lớp 9 tháng 10 năm học 2022 – 2023 tại phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Đề khảo sát bao gồm các câu hỏi sau: Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. Tính DE3/BD.CE theo R. Tính: AI/HB + AI/HC. Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất. Hãy tự tin và cố gắng hết mình để hoàn thành đề khảo sát này. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!