Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2022 - 2023 trường THPT Thuận Thành 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2022 – 2023 trường THPT Thuận Thành 1, tỉnh Bắc Ninh; đề thi hình thức tự luận với 07 bài toán, thời gian làm bài: 120 phút (không kể thời gian giao đề). Trích dẫn Đề thi HSG Toán 11 năm 2022 – 2023 trường THPT Thuận Thành 1 – Bắc Ninh : + Trò chơi quay bánh xe số trong chương trình truyền hình “Hãy chọn giá đúng” của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15, …, 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người chơi được tính như sau + Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được. + Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được. + Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100. Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này. + Trong toán học và nghệ thuật, hai đại lượng được gọi là có tỷ lệ vàng nếu tỷ số giữa tổng các đại lượng đó với đại lượng lớn hơn bằng tỷ số giữa đại lượng lớn hơn với đại lượng nhỏ hơn. Vậy tỷ lệ vàng được biểu diễn như sau. 1) Hãy tính tỷ lệ vàng ϕ đó. 2) Cho một đường tròn. Trên đường tròn đó lấy năm điểm ABCDE sao cho ABCDE là ngũ giác đều. Nối các đỉnh của đa giác đó tạo thành hình ngôi sao năm cánh (như hình vẽ).Gọi giao điểm của BE với AC và AD lần lượt là I và K. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với AD // BC, AB = BC = a, AD = 2a, tam giác SAD vuông cân tại S và SB a 3. Gọi M là trung điểm của SA, G là trọng tâm của tam giác SCD, H là giao điểm của BG và mặt phẳng (SAC). Chứng minh rằng BM // (SCD) và tính tỉ số HB HG. Cho tứ diện đều ABCD cạnh a. Hai điểm M N chạy tương ứng trên các đoạn AB và CD sao cho BM DN. Tìm giá trị lớn nhất, nhỏ nhất của MN.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 11 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là một tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC và CD. Biết góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 0 30. a) Chứng minh rằng BP AMN. b) Tính khoảng cách giữa hai đường thẳng AB và SC. + Giải phương trình sau: sin 2 2cos2 1 sin 4cos x x xx. + Cho số nguyên dương n thỏa mãn điều kiện: 32 1 2 n n C C CC n n nn. Tìm hệ số của số hạng chứa 11 x trong khai triển 3 8 3 n n n x x với x ≠ 0.
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2014 - 2015 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi cấp tỉnh Toán 11 năm học 2014 – 2015 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh : + Trong mặt phẳng (P) cho nửa đường tròn (O) đường kính AC, điểm B di động trên nửa đường tròn (O) với B khác A và C. Trên nửa đường thẳng Ax vuông góc với (P) lấy điểm S sao cho SA AC a. Gọi H, K lần lượt là chân đường cao hạ từ A xuống SB, SC. a) Chứng minh rằng tam giác AHK vuông. Tính diện tích tam giác SBC theo a biết 34 34 a HK. b) Xác định vị trí của B trên nửa đường tròn (O) sao cho tổng diện tích các tam giác SAB và CAB lớn nhất. + Cho dãy số (xn) xác định như sau: 1 x 3 và 3 1 2 2 4 6 n n n n n x x x x x với n 1 2 Với mỗi số nguyên dương n đặt 2 1 1 4 n n i i y x. Tìm lim n y. + Cho x, y, z dương thỏa mãn 3 26 xy yz zx. Tìm giá trị lớn nhất của biểu thức.
Đề thi học sinh giỏi Toán 11 năm 2012 - 2013 trường THPT Thuận An - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học sinh giỏi Toán 11 năm học 2012 – 2013 trường THPT Thuận An, tỉnh Thừa Thiên Huế; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 11 năm 2012 – 2013 trường THPT Thuận An – TT Huế : + Bạn Tùng có 10 người bạn thân, trong đó có Long và Lân. Tùng muốn mời 5 bạn đến tham dự sinh nhật của mình. Hỏi bạn Tùng có bao nhiêu cách mời, biết rằng hai bạn Long và Lân rất ghét nhau nên Tùng không thể đồng thời mời cả hai bạn này cùng có mặt. + Ba số x, y, z theo thứ tự lập thành một cấp số nhân; đồng thời chúng theo thứ tự là số hạng thứ nhất, số hạng thứ ba và số hạng thứ chín của một cấp số cộng. Tìm 3 số đó biết tổng của chúng bằng 13. + Trong mặt phẳng Oxy, cho ∆ABC. Biết B C nằm trên đường thằng dx y 30 A nằm trên đường thẳng d xy 3 2 0 trọng tâm của tam giác ABC là 2 2 3 3 G và diện tích tam giác ABC bằng 10. Tìm tọa độ các đỉnh của tam giác, biết hoành độ của điểm A không âm.
Đề thi HSG lớp 11 môn Toán năm 2022 2023 cụm THPT huyện Yên Dũng Bắc Giang
Nội dung Đề thi HSG lớp 11 môn Toán năm 2022 2023 cụm THPT huyện Yên Dũng Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cơ sở môn Toán lớp 11 năm học 2022 – 2023 cụm trường THPT huyện Yên Dũng, tỉnh Bắc Giang; đề thi gồm 40 câu trắc nghiệm – 14 điểm và 03 câu tự luận – 06 điểm, thời gian: 120 phút (không kể thời gian phát đề); đề thi có hướng dẫn giải và đáp án mã đề 201 và 202. Trích dẫn Đề thi HSG Toán lớp 11 năm 2022 – 2023 cụm THPT huyện Yên Dũng – Bắc Giang : + Cho một hình vuông, mỗi cạnh của hình vuông đó được chia thành n đoạn bằng nhau bởi n −1 điểm chia (không tính 2 đầu mút mỗi cạnh). Xét các tứ giác có 4 đỉnh là 4 điểm chia trên 4 cạnh của hình vuông đã cho. Gọi a là số tứ giác tạo thành và b là số các hình bình hành trong a tứ giác đó. Giá trị của n thỏa mãn a b 9 là? + Cho tam giác ABC có độ dài các cạnh là abc theo thứ tự lập thành một cấp số cộng. Biết tan tan 2 2 A Cx y với x y thuộc N và x y nguyên tố cùng nhau, giá trị 2x y là? + Cho tứ diện ABCD. Các điểm M N lần lượt là trung điểm của các đoạn thẳng AB và CD; điểm G là trọng tâm của tam giác BCD. Gọi I là giao điểm của hai đường thẳng MN và AG. Tính tỉ số IA IG. File WORD (dành cho quý thầy, cô):