Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hùng Vương Phú Thọ

Nội dung Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hùng Vương Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; kỳ thi được diễn ra vào ngày 29 tháng 11 năm 2023; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114. Trích dẫn Đề khảo sát lần 1 Toán lớp 11 năm 2023 – 2024 trường chuyên Hùng Vương – Phú Thọ : + Một phân xưởng may áo vest và quần âu để chuẩn bị cho dịp cuối năm. Biết may 1 áo vest hết 2m vải và cần 20 giờ; 1 quần âu hết 1,5m vải và cần 5 giờ. Xí nghiệp được giao sử dụng không quá 900m vải và số giờ công không vượt quá 6000 giờ. Theo khảo sát thị trường, số lượng quần bán ra không nhỏ hơn số lượng áo và không vượt quá 2 lần số lượng áo. Khi xuất ra thị trường, 1 chiếc áo lãi 350 nghìn đồng, 1 chiếc quần lãi 100 nghìn đồng. Tiền lãi cao nhất phân xưởng thu được dịp cuối năm đó là (biết thị trường tiêu thụ luôn đón nhận sản phẩm của xí nghiệp). + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai đường thẳng song song khi và chỉ khi chúng ở trên cùng một mặt phẳng. B. Hai đường thẳng chéo nhau khi và chỉ khi chúng không có điểm chung. C. Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau. D. Khi hai đường thẳng ở trên hai mặt phẳng thì hai đường thẳng đó chéo nhau. + Các bệnh truyền nhiễm có thể lây lan rất nhanh. Giả sử có 5 người bị bệnh trong tuần đầu tiên của một đợt dịch, và mỗi người bị bệnh sẽ lây bệnh cho bốn người vào cuối tuần tiếp theo. Tính đến hết tuần thứ 10 của đợt dịch, có bao nhiêu người đã bị lây bởi căn bệnh này? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn Đề thi học sinh giỏi tỉnh Toán lớp 11 năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy 2, 4, n điểm phân biệt (n > 3 và các điểm không trùng với các đỉnh của tam giác ABC). Biết rằng số tam giác có các đỉnh lấy từ n + 6 điểm đã cho là 247. Tìm hệ số của x9 trong khai triển P(x) = (x2 − 2x)n. + Bảng hình vuông (10 × 10) gồm 100 hình vuông đơn vị, mỗi hình có diện tích bằng 1. Hỏi có bao nhiêu hình chữ nhật tạo thành từ các hình vuông đơn vị của bảng. Chọn ngẫu nhiên một hình chữ nhật trên, tính xác suất để hình chữ nhật chọn được có diện tích là số chẵn. + Cho hình hộp ABCD.A’B’C’D’. Hãy dựng đường thẳng d cắt cả hai đường thẳng AC’ và BA’ đồng thời song song với đường thẳng BD. Gọi I, J lần lượt là giao điểm của d với AC’ và BA’. Tính tỷ số AI/AC’.
Đề thi HSG lớp 11 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc
Nội dung Đề thi HSG lớp 11 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi mã đề 101 hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án. Trích dẫn Đề thi HSG Toán lớp 11 năm 2022 – 2023 trường THPT Trần Phú – Vĩnh Phúc : + Cho hình chóp S.ABCD có BC // AD và BC AD AB b 2 1. Tam giác SAD đều. Mặt phẳng (P) đi qua điểm M trên cạnh AB và song song với các đường thẳng SA và BC, đồng thời cắt CD, SC, SB theo thứ tự tại N, P, Q. Đặt AM x x b. Giá trị lớn nhất của diện tích thiết diện của hình chóp với mặt phẳng (P) bằng? + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có góc ACB tù. Hai điểm D(4;1), E(2;-1) lần lượt là chân đường cao kẻ từ đỉnh A và B của tam giác ABC. Trung điểm của cạnh AB là điểm N(1;2), trung điểm của cạnh AC là điểm M nằm trên đường thẳng có phương trình 2 6 50 x y. Tìm tung độ của điểm M, biết điểm M có hoành độ lớn hơn 3? + Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O, M là trung điểm SB. Mặt phẳng (P) đi qua M và song song với các đường thẳng SO, AD. Thiết diện của (P) và hình chóp là hình gì. A. Hình thoi B. Hình thang C. Hình bình hành D. Hình vuông. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG lớp 11 môn Toán năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán lớp 11 năm học 2021 – 2022 và chọn đội dự tuyển dự thi chọn học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình (vòng 1 và vòng 2); kỳ thi được diễn ra vào ngày 25 tháng 04 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn HSG Toán lớp 11 năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Gọi S là tập hợp tất cả các số nguyên dương nhỏ hơn 1000. Một số thuộc S được gọi là số “thú vị” nếu số đó là hợp số và không chia hết cho ba số 2; 3; 5. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn là số “thú vị”. + Người ta tô màu tất cả các số nguyên dương bằng hai màu xanh và đỏ (mỗi số chỉ được tô đúng một màu). Biết rằng có vô hạn các số được tô màu xanh và tổng của hai số được tô khác màu là một số được tô màu đỏ. Gọi số nguyên dương nhỏ nhất lớn hơn 1 được tô màu đỏ là q. a. Hãy chỉ ra (có chứng minh) một cách tô màu thỏa mãn yêu cầu bài toán khi q = 2. b. Chứng minh rằng q là một số nguyên tố. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với mặt phẳng ABCD và SA a AB b AD c. Gọi H là hình chiếu vuông góc của A lên mặt phẳng SBD. a. Trong trường hợp SA AB AD 7 1 gọi P là mặt phẳng đi qua A và vuông góc với SC. Hãy xác định thiết diện của hình chóp S ABCD khi cắt bởi mặt phẳng P và tính diện tích thiết diện đó. b. Chứng minh rằng H là trực tâm của tam giác SBD. c. Chứng minh rằng 3 2 HBD HSD HSB abc a S b S c S ở đây kí hiệu XYZ S là diện tích của tam giác XYZ.
Đề thi học sinh giỏi lớp 11 môn Toán năm 2021 2022 cụm trường THPT Hà Nội
Nội dung Đề thi học sinh giỏi lớp 11 môn Toán năm 2021 2022 cụm trường THPT Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cụm môn Toán lớp 11 năm học 2021 – 2022 cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội.