Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình chữ nhật

Tài liệu gồm 31 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Định nghĩa: Hình chữ nhật là tứ giác có bốn góc vuông. Tính chất: + Hình chữ nhật có tất cả các tính chất của hình bình hành. + Hình chữ nhật có tất cả các tính chất của hình thang cân. + Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường. Dấu hiệu nhận biết: + Tứ giác có ba góc vuông là hình chữ nhật. + Hình thang cân có một góc vuông là hình chữ nhật. + Hình bình hành có một góc vuông là hình chữ nhật. + Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật. Áp dụng vào tam giác vuông: + Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. + Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC + Dạng 1: Chứng minh tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng các dấu hiệu nhận biết để chứng minh một tứ giác là hình chữ nhật. + Dạng 2: Áp dụng tính chất hình chữ nhật để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và các tính chất về cạnh, góc và đường chéo của hình chữ nhật. + Dạng 3: Vận dụng định lý thuận và định lý đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. Phương pháp giải: Sử dụng định lí về tính chất đường trung tuyến ứng với cạnh huyền cả tam giác vuông để chứng minh các hình bằng nhau hoặc chứng minh tam giác vuông. + Dạng 4: Tìm điều kiện để tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình chữ nhật. B. DẠNG BÀI NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY + Tính chất và dấu hiệu nhận biết của hình chữ nhật. + Tính chất đường trung tuyến của tam giác vuông. + Đường thẳng song song với một đường thẳng cho trước. C. PHIẾU TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO + Dạng 1. Chứng minh tứ giác là hình chữ nhật. + Dạng 2. Vận dụng tính chất của hình chữ nhật để chứng minh các tính chất hình học. + Dạng 3. Sử dụng định lí thuận và đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. + Dạng 4. Tìm điều kiện để tứ giác là hình chữ nhật. + Dạng 5. Tổng hợp.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. TRỌNG TÂM CẦN ĐẠT 1. Chia đơn thức cho đơn thức. 2. Chia đa thức cho đơn thức. B. CÁC DẠNG BÀI TẬP Dạng 1 : Chia đơn thức cho đơn thức. Muốn chia đơn thức A cho đơn thức B ta làm như sau: + Bước 1: Chia hệ số của đơn thức A cho hệ số của đơn thức B. + Bước 2: Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B. + Bước 3: Nhân các kết quả vừa tìm được với nhau. Dạng 2 : Chia đa thức cho đơn thức. Muốn chia đa thức A cho đơn thức B ta làm như sau: Chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau. C. PHIẾU BÀI TỰ LUYỆN
Chuyên đề phân tích đa thức thành nhân tử
Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phân tích đa thức thành nhân tử, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT 1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. 2. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. 3. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử. 4. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN + Dạng 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. + Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. + Dạng 3: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử. + Dạng 4: Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ. + Dạng 5: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. + Dạng 6: Tìm x với điều kiện cho trước. C. CÁC DẠNG BÀI TỔNG HỢP MINH HỌA NÂNG CAO D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề những hằng đẳng thức đáng nhớ
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề những hằng đẳng thức đáng nhớ, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT 1. Bình phương của một tổng. 2. Bình phương của một hiệu. 3. Hiệu hai bình phương. 4. Lập phương của một tổng. 5. Lập phương của một hiệu. 6. Tổng hai lập phương. 7. Hiệu hai lập phương. Hệ quả : 1. Tổng hai bình phương. 2. Tổng hai lập phương. 3. Bình phương của tổng ba số hạng. 4. Lập phương của tổng ba số hạng. B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN Dạng 1 : Biến đổi biểu thức. Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức. Dạng 2 : Tính giá trị biểu thức. Dạng bài toán này rất đa dạng ta có thể giải theo phương pháp cơ bản như sau: + Biến đổi biểu thức cho trước thành những biểu thức cần thiết sao cho phù hợp với biểu thức cần tính giá trị. + Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức cần tính giá trị về biểu thức có liên quan đến giá trị đề bài đã cho. + Thay vào biểu thức cần tính tìm được giá trị. Dạng 3 : Tìm giá trị lớn nhất, giá trị nhỏ nhất. + Giá trị lớn nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: m – Q2(x) =< m (với m là hằng số), suy ra GTLN của A(x) là m. + Giá trị nhỏ nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: n + Q2(x) >= n (với n là hằng số), suy ra GTNN của A(x) là n. C. CÁC DẠNG BÀI TẬP MINH HỌA NÂNG CAO TỔNG HỢP D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. TRỌNG TÂM CẦN ĐẠT I. Lý thuyết 1. Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích với nhau. 2. Nhân đa thức với đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau. II. Các dạng bài tập + Dạng 1: Thực hiện phép tính. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để thực hiện phép tính. + Dạng 2: Tìm x với điều kiện cho trước. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để tìm giá trị x. B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN + Dạng 1: Rút gọn biểu thức. + Dạng 2: Tìm giá trị chưa biết. + Dạng 3: Tính giá trị biểu thức. + Dạng 4: Chứng minh giá trị biểu thức không phụ thuộc vào biến. + Dạng 5: Bài toán nâng cao.