Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2019 2020 trường THCS Quang Trung TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2019 2020 trường THCS Quang Trung TP HCM Bản PDF - Nội dung bài viết Đề thi học kỳ 2 Toán lớp 9 năm học 2019-2020 trường THCS Quang Trung TP HCM Đề thi học kỳ 2 Toán lớp 9 năm học 2019-2020 trường THCS Quang Trung TP HCM Tháng 6 năm 2020, trường THCS Quang Trung, quận 4, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2019 – 2020. Đề thi HK2 Toán lớp 9 năm học 2019 – 2020 trường THCS Quang Trung – TP HCM được biên soạn theo dạng đề tự luận, đề gồm có 01 trang với 05 bài toán, thời gian làm bài thi là 90 phút. Trích dẫn đề thi HK2 Toán lớp 9 năm học 2019 – 2020 trường THCS Quang Trung – TP HCM: + Nhân kỷ niệm ngày Quốc Tế Thiếu Nhi, năm học 2019 – 2020, trường THCS Quang Trung (TP HCM) tổ chức chuyến tham quan ngoại khóa tại một điểm du lịch với mức giá ban đầu là 175,000 đồng/người. Biết công ty du lịch giảm 10% chi phí cho mỗi giáo viên và giảm 30% chi phí cho mỗi học sinh. Số học sinh và giáo viên tham gia là 90 người và tổng chi phí tham quan (sau khi giảm giá là 11,375,000 đồng. Tính số giáo viên và số học sinh đã tham gia chuyến đi. + Một bể nước hình trụ có đường kính đáy là 3,2 m và chiều cao là 2,4 m. Biết công thức tính thể tích hình trụ là V = pi.r^2.h, trong đó V là thể tích hình trụ; r là bán kính đáy của hình trụ; h là chiều cao của hình trụ. a) Tính thể tích bể nước hình trụ (kết quả làm tròn đến chữ số thập phân thứ nhất). b) Người ta muốn làm một bể nước hình trụ mới có thể tích gấp 2 lần thể tích cũ. Bạn An nói: Bể nước mới cần có bán kính dài gấp 2 lần bán kính bể nước cũ. Bạn Bình nói: Bể nước mới cần có chiều cao gấp 2 lần chiều cao bể nước cũ. Theo em, bạn nào nói đúng? Tại sao? + Cho đường tròn tâm O, đường kính AB = 2R. Trên tiếp tuyến tại A của đường tròn (O) lấy điểm M sao cho MA > R. Vẽ tiếp tuyến MD của (O) (D là tiếp điểm và D khác A), gọi H là giao điểm của OM và AD. a) Chứng minh: tứ giác MAOD nội tiếp và OH.OM = R^2. b) Gọi C là giao điểm của MB với đường tròn (O). Chứng minh tứ giác AHCM nội tiếp và CHD = CAB. c) Qua O vẽ đường thẳng d vuông góc với OM. Đường thẳng d cắt tia MA tại I. Gọi K là trung điểm của OA và N là giao điểm của MK và IB. Chứng minh IK vuông góc MB.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra Toán 9 năm 2018 - 2019 phòng GDĐT Long Biên - Hà Nội
Ngày 09 tháng 05 năm 2019, phòng Giáo dục và Đào tạo quận Long Biên, Hà Nội tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2018 – 2019. Đề kiểm tra Toán 9 năm 2018 – 2019 phòng GD&ĐT Long Biên – Hà Nội được biên soạn dựa theo cấu trúc đề minh họa môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 do sở Giáo dục và Đào tạo Hà Nội đề xuất, đề gồm 1 trang với 5 bài toán dạng tự luận, thời gian học sinh làm bài là 90 phút. Trích dẫn đề kiểm tra Toán 9 năm 2018 – 2019 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ sản xuất được giao làm 800 sản phẩm. Nhờ tăng năng suất lao động tổ 1 đã làm vượt mức 10% và tổ 2 làm vượt mức 20% so với kế hoạch của mỗi tổ nên cả hai tổ làm được 910 sản phẩm. Tính số sản phẩm thực tế của mỗi tổ đã làm được. + Cho parabol (P): y = x^2 và đường thẳng d: y = 2x – 3 + m (x là ẩn, m là tham số). a) Xác định m để đường thẳng d cắt Parabol (P) tại hai điểm phân biệt A và B. b) Gọi y1 và y2 lần lượt là tung độ của hai điểm A và B trên mặt phẳng toạ độ Oxy. Tìm m sao cho y1 – y2 = 8. + Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R), tia phân giác của góc BAC cắt BC tại D, cắt (O) tại E, vẽ DK vuông góc với AB tại K và DM vuông góc với AC tại M. a) Chứng minh tứ giác AKEM nội tiếp. b) Chứng minh AD.AE = AB.AC. c) Chứng minh MK = AD.sin BAC. d) Tính tỉ số diện tích tam giác ABC và diện tích tứ giác AKEM.
Đề kiểm tra học kỳ 2 Toán 9 năm 2018 - 2019 phòng GDĐT TP Quảng Ngãi
Đề kiểm tra học kỳ 2 Toán 9 năm học 2018 – 2019 phòng GD&ĐT thành phố Quảng Ngãi gồm 1 trang với 4 bài toán, đề được biên soạn theo dạng đề tự luận, học sinh làm bài trong thời gian 90 phút, kỳ thi nhằm đánh giá chất lượng học tập môn Toán của học sinh lớp 9 trong học kỳ vừa qua. Trích dẫn đề kiểm tra học kỳ 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT TP Quảng Ngãi : + Cho hàm số y = x^2 có đồ thị (P) và hàm số y = -x + 2 có đồ thị (d). a) Vẽ (P) và (d) trên cùng một mặt phẳng tọa độ. b) Bằng phép tính, tìm tọa độ giao điểm của (P) và (d). [ads] + Cho phương trình: x^2 – 2(m + 1)x + m^2 + 2m – 1 = 0 (m là tham số) (1). a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi m. b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa điều kiện: x1^2.x2 + x1.x2^2 + 3(x1 + x2) = 0. + Một tổ công nhân dự định làm xong 120 sản phẩm trong một thời gian nhất định. Nhưng khi thực hiện, nhờ cải tiến kĩ thuật nên mỗi ngày tổ làm tăng thêm 10 sản phẩm so với với dự định. Do đó, tổ đã hoàn thành công việc sớm hơn dự định 1 ngày. Hỏi khi thực hiện, mỗi ngày tổ làm được bao nhiêu sản phẩm?
Đề kiểm tra chất lượng cuối năm Toán 9 năm 2018 2019 sở GDĐT Bắc Ninh
Vừa qua, sở Giáo dục và Đào tạo tỉnh Bắc Ninh đã tổ chức kỳ thi kiểm tra chất lượng cuối năm môn Toán lớp 9 năm học 2018 – 2019, nhằm kiểm tra đánh giá năng lực học tập môn Toán của học sinh lớp 9 trong giai đoạn học kỳ 2 năm học 2018 – 2019. Đề kiểm tra chất lượng cuối năm Toán 9 năm 2018 – 2019 sở GD&ĐT Bắc Ninh gồm 1 trang với 6 bài toán trắc nghiệm và 4 bài toán tự luận, học sinh có 90 phút để làm bài thi, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề kiểm tra chất lượng cuối năm Toán 9 năm 2018 – 2019 sở GD&ĐT Bắc Ninh : + Sở Giáo dục và Đào tạo Bắc Ninh dự định tổ chức hội nghị tại hội trường 500 chỗ ngồi của trường THPT Chuyên Bắc Ninh, hội trường được chia thành từng dãy ghế, mỗi dãy ghế có số chỗ ngồi như nhau. Vì có 567 người dự hội nghị nên ban tổ chức phải kê thêm 1 dãy ghế, đồng thời phải kê thêm 2 chỗ ngồi vào tất cả các dãy ghế thì vừa đủ số chỗ ngồi. Hỏi lúc đầu hội trường có bao nhiêu dãy ghế và mỗi dãy ghế có bao nhiêu chỗ ngồi? + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Đường tròn đường kính AH cắt hai cạnh AB, AC theo thứ tự tại M và N. a) Chứng minh tứ giác AMHN là hình chữ nhật. b) Chứng minh tứ giác BMNC là tứ giác nội tiếp. + Cho phương trình x^2 – 2mx + m^2 – m + 1 = 0, với x là ẩn; m là tham số. a) Giải phương trình với m = 2. b) Tìm m để phương trình có hai nghiệm x1; x2 thỏa mãn x1^2 + x2^2 = x1.x2 + 1.
Đề kiểm tra HK2 Toán 9 năm 2018 - 2019 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến thầy cô và các bạn đề kiểm tra HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Tây Hồ – Hà Nội, đề thi gồm 05 bài toán dạng bài tự luận, học sinh làm bài thi trong 90 phút. Trích dẫn đề kiểm tra HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Tây Hồ – Hà Nội : + Giải bài toán bằng cách phương trình hoặc hệ phương trình: Một xưởng theo kế hoạch phải in 6000 quyển sách giống nhau trong một thời gian quy định, với số quyển sách in được trong mỗi ngày là như nhau. Khi thực hiện mỗi ngày xưởng đã in nhiều hơn 300 quyển sách so với trong kế hoạch, nên xưởng đã in xong số quyển sách nói trên sớm hơn một ngày. Tính số quyển sách xưởng in được trong một ngày theo kế hoạch. [ads] + Cho phương trình: x^2 – 2mx + m^2 – m + 1 = 0. a) Giải phương trình khi m = 1. b) Tìm m để phương trinh có hai nghiệm phân biệt x1, x2 thỏa mãn x2^2 + 2mx1 = 9. + Cho đường tròn (O;R) đường kính AB. Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) tại M. a) Chứng minh tứ giác APMO nội tiếp một đường tròn. b) Chứng minh BM // OP. c) Đường thẳng vuông góc với AB ở O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành. d) Biết AN cắt OP tại K, PM cắt ON tại I, PN và OM kéo dài cắt nhau tại J. Chứng minh ba điểm I, J, K thẳng hàng.