Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối học kì 1 Toán 10 năm 2023 - 2024 sở GDĐT Quảng Ngãi

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra cuối học kì 1 môn Toán 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1 TẬP HỢP. MỆNH ĐỀ Mệnh đề. – Nhận biết: + Phát biểu được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. – Thông hiểu: + Thiết lập được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. + Xác định được tính đúng/sai của một mệnh đề toán học trong những trường hợp đơn giản. Tập hợp và các phép toán trên tập hợp. – Nhận biết: + Nhận biết được các khái niệm cơ bản về tập hợp (tập con, hai tập hợp bằng nhau, tập rỗng) và biết sử dụng các kí hiệu. – Thông hiểu: + Thực hiện được phép toán trên các tập hợp (hợp, giao, hiệu của hai tập hợp, phần bù của một tập con) và biết dùng biểu đồ Ven để biểu diễn chúng trong những trường hợp cụ thể. – Vận dụng: + Giải quyết được một số vấn đề thực tiễn gắn với phép toán trên tập hợp (ví dụ: những bài toán liên quan đến đếm số phần tử của hợp các tập hợp). 2 BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. Hệ bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được hệ bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Vận dụng: + Vận dụng được kiến thức về hệ bất phương trình bậc nhất hai ẩn vào giải quyết bài toán thực tiễn, bài toán tìm cực trị của biểu thức F = ax + by trên một miền đa giác. – Vận dụng cao: + Vận dụng được kiến thức về bất phương trình, hệ bất phương trình bậc nhất hai ẩn vào giải quyết một số bài toán thực tiễn (phức hợp, không quen thuộc). 3 HỆ THỨC LƯỢNG TRONG TAM GIÁC Giá trị lượng giác của một góc từ 0° đến 180°. – Nhận biết: + Nhận biết được giá trị lượng giác của một góc từ 0° đến 180°. + Nhận biết được hệ thức liên hệ giữa giá trị lượng giác của các góc phụ nhau, bù nhau, các hệ thức lượng giác cơ bản. – Thông hiểu: + Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng máy tính cầm tay. Hệ thức lượng trong tam giác. – Nhận biết: + Nhận biết các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin, công thức tính diện tích tam giác. – Thông hiểu: + Sử dụng được các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin và công thức tính diện tích tam giác để tính các cạnh, các góc chưa biết và diện tích tam giác, độ dài đường cao, đường trung tuyến, bán kính đường tròn nội, ngoại tiếp tam giác. – Vận dụng: + Mô tả được cách giải tam giác và vận dụng được vào việc giải một số bài toán có nội dung thực tiễn (ví dụ: xác định khoảng cách giữa hai địa điểm khi gặp vật cản, xác định chiều cao của vật khi không thể đo trực tiếp) hoặc các bài toán khác về hệ thức lượng trong tam giác. 4 VECTƠ Các khái niệm mở đầu. – Nhận biết: + Nhận biết được khái niệm vectơ, hai vectơ cùng phương, hai vectơ cùng hướng, hai vectơ bằng nhau, vectơ-không. – Thông hiểu: + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. + Tính được độ dài vectơ. Tổng và hiệu của hai vectơ. – Nhận biết: + Nhận biết được quy tắc ba điểm, quy tắc hình bình hành, quy tắc về hiệu vectơ, quy tắc trung điểm và trọng tâm tam giác. – Thông hiểu: + Thực hiện được các phép toán tổng và hiệu hai vectơ. + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. – Vận dụng: + Vận dụng vectơ trong các bài toán tổng hợp lực, tổng hợp vận tốc. Tích của một vectơ với một số. – Nhận biết: + Nhận biết định nghĩa tích của vectơ với một số, các tính chất. + Biết được điều kiện để hai vectơ cùng phương, tính chất trung điểm, tính chất trọng tâm. – Thông hiểu: + Thực hiện được phép nhân vectơ với một số. + Mô tả các mối quan hệ cùng phương, cùng hướng bằng vectơ. Vectơ trong mặt phẳng tọa độ. – Nhận biết: + Nhận biết được vectơ theo hai vectơ đơn vị, tìm được tọa độ vectơ khi biết tọa độ hai điểm, tìm độ dài vectơ khi biết tọa độ. – Thông hiểu: + Tính được tọa độ điểm, vectơ thỏa mãn đẳng thức, tọa độ của vectơ tổng, tọa độ trung điểm, trọng tâm, tọa độ đỉnh hình bình hành, vectơ cùng phương, độ dài vectơ. – Vận dụng: + Vận dụng kiến thức tọa độ của điểm, của vectơ để giải các bài toán tìm tọa độ của điểm, của vectơ hoặc các bài toán khác có vận dụng thực tiễn. Tích vô hướng của hai vectơ. – Nhận biết: + Nhận biết được tích vô hướng hai vectơ, biểu thức tọa độ tích vô hướng, góc giữa hai vectơ. – Thông hiểu: + Tính được tích vô hướng hai vectơ, góc giữa hai vectơ, biểu thức tọa độ tích vô hướng, tìm tọa độ điểm, vectơ liên quan đến độ dài vectơ, tích vô hướng. – Vận dụng: + Sử dụng được vectơ và các phép toán trên vectơ để giải thích một số hiện tượng có liên quan đến Vật lí và Hoá học (ví dụ: những vấn đề liên quan đến lực, đến chuyển động). + Vận dụng được kiến thức về vectơ để giải một số bài toán hình học và một số bài toán liên quan đến thực tiễn (ví dụ: xác định lực tác dụng lên vật). 5 CÁC SỐ ĐẶC TRƯNG CỦA MẪU SỐ LIỆU KHÔNG GHÉP NHÓM Số gần đúng, sai số. – Nhận biết: + Hiểu được khái niệm số gần đúng, sai số tuyệt đối. – Thông hiểu: + Xác định được số gần đúng của một số với độ chính xác cho trước. + Xác định được sai số tương đối của số gần đúng. – Vận dụng: + Xác định được số quy tròn của số gần đúng với độ chính xác cho trước. + Biết sử dụng máy tính cầm tay để tính toán với các số gần đúng. Các số đặc trưng đo xu thế trung tâm. – Nhận biết: + Nắm các khái niệm về số trung bình, số trung vị, tứ phân vị, mốt và ý nghĩa. – Thông hiểu: + Biết tìm số trung bình và mốt dựa vào bảng số liệu. – Vận dụng: + Tính được số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm: số trung bình cộng (hay số trung bình), trung vị (median), tứ phân vị (quartiles), mốt (mode). – Vận dụng cao: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản. Các số đặc trưng đo mức độ phân tán. – Nhận biết: + Nhận biết được mối liên hệ giữa thống kê với những kiến thức của các môn học trong Chương trình lớp 10 và trong thực tiễn. – Thông hiểu: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. – Vận dụng: + Tính được số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm: khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn. – Vận dụng cao: + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 10 năm học 2018 - 2019 trường Yên Mô B - Ninh Bình
Đề thi học kỳ 1 Toán 10 năm học 2018 – 2019 trường Yên Mô B – Ninh Bình mã đề 101, đề gồm 25 câu trắc nghiệm khách quan và 3 câu tự luận, tỉ lệ điểm trắc nghiệm : tự luận là 5:5, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 10 năm học 2018 – 2019 trường Yên Mô B – Ninh Bình : + Cho ΔABC biết A(1;2), B(3;-1), C(6;1). Mệnh đề nào sau đây đúng? A. ΔABC vuông tại A. B. ΔABC vuông tại B. C. ΔABC vuông tại C. D. ΔABC đều. + Cho tam giác ΔABC biết AC = 2AB; AD là đường phân giác trong góc A, (D thuộc BC). Biết rằng AD = mAB + kAC. Giá trị của biểu thức S = 3m + 2019k bằng? [ads] + Cho tam giác ΔABC biết A(1;2), B(5;5), C(4;6). a) Tính AB.AC. Chứng minh rằng tam giác ΔABC cân. b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. c) Tìm tọa độ điểm M thuộc Ox sao cho ΔABM vuông tại A.
Đề thi học kỳ 1 Toán 10 năm học 2018 - 2019 trường THPT chuyên Nguyễn Huệ - Hà Nội
Đề thi học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Nguyễn Huệ – Hà Nội mã đề 132 được biên soạn nhằm tổng kết lại các kiến thức Toán lớp 10 mà học sinh đã được học trong giai đoạn HK1 vừa qua của năm học 2018 – 2019, đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành đề thi này. Trích dẫn đề thi học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Nguyễn Huệ – Hà Nội : + Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai? A. Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi. B. Tam giác cân có một góc bằng 60 độ là tâm giác đều. C. Hình bình hành có hai đường chéo bằng nhau là hình vuông. D. Tam giác có hai đường cao bằng nhau là tam giác cân. [ads] + Cho định lí “Nếu hai tam giác bằng nhau thì diện tích chúng bằng nhau”. Mệnh đề nào sau đây đúng?A. Hai tam giác bằng nhau là điều kiện cần và đủ để chúng có diện tích bằng nhau. B. Hai tam giác bằng nhau là điều kiện cần để diện tích chúng bằng nhau. C. Hai tam giác có diện tích bằng nhau là điều kiện đủ để chúng bằng nhau. D. Hai tam giác bằng nhau là điều kiện đủ để diện tích chúng bằng nhau. + Cho ba lực F1 = MA, F2 = MB, F3 = MC cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của F1, F2 đều bằng 50 N và góc AMB = 60 độ. Tính cường độ lực của F3.
Đề thi Toán 10 học kỳ 1 năm 2018 - 2019 trường THPT Nhân Chính - Hà Nội
Đề thi Toán 10 học kỳ 1 năm học 2018 – 2019 trường THPT Nhân Chính – Hà Nội (đề số 1) được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 15 câu, chiếm 6 điểm, phần tự luận gồm 4 câu, chiếm 4 điểm, thời gian làm bài 60 phút, đề nhằm giúp giáo viên bộ môn và nhà trường đánh giá lại toàn diện các kiến thức Toán 10 mà học sinh đã được học trong thời gian qua. Trích dẫn đề thi Toán 10 học kỳ 1 năm 2018 – 2019 trường THPT Nhân Chính – Hà Nội : + Trong hệ trục tọa độ Oxy, cho tam giác ABC có A(-8;3), B(4;12), C(4;-13). a) Tìm tọa độ điểm D để tứ giác ABDC là hình bình hành. b) Tìm tọa độ điểm E trên trục hoành sao cho tam giác ABE vuông tại A. c) Tìm tọa độ điểm I là tâm đường tròn nội tiếp tam giác ABC. [ads] + Cho các vec tơ a, b khác 0. Khẳng định nào sau đây SAI? A. a, b cùng hướng khi và chỉ khi a.b = |a|.|b|. B. a, b ngược hướng khi và chỉ khi a.b = -|a|.|b|. C. a ⊥ b khi và chỉ khi a.b = 0. D. a, b cùng phương khi và chỉ khi a.b = 1. + Gọi T là tổng các giá trị của m để phương trình x^2 – (m + 2)x + m + 1 = 0 có 2 nghiệm phân biệt và nghiệm này gấp đôi nghiệm kia. Khi đó T nhận giá trị?
Tuyển tập 6 đề thi thử sức trước kỳ thi chất lượng học kỳ 1 môn Toán 10
Nhằm hỗ trợ các em trong quá trình ôn tập chuẩn bị cho kỳ thi học kỳ 1 Toán 10, giới thiệu đến các em bộ đề tuyển tập 6 đề thi thử sức trước kỳ thi chất lượng học kỳ 1 môn Toán 10, bộ đề được biên soạn bởi thầy Lương Tuấn Đức, mỗi đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, yêu cầu học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn bộ đề tuyển tập 6 đề thi thử sức trước kỳ thi chất lượng học kỳ 1 môn Toán 10 : + Giả sử trong tương lai, đất nước Việt Nam chúng ta sẽ xây dựng cổng Hà Nội, và được mệnh danh là công trình kiến trúc vòm cao tây tại Đông Bán cầu. Người ta lập một hệ trục tọa độ sao cho một chân cổng đi qua gốc tọa độ, chân kia của cổng có tọa độ (160;0), một điểm M trên thân cổng có tọa độ (10;50). Các bạn hãy tính toán xem chiều cao h của cổng gần nhất với giá trị nào? [ads] + Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, t là thời gian tính theo giây, mốc thời gian là khi quả bóng được đá lên, h là độ cao tính theo m. Giả thiết quả bóng được đá từ độ cao 2m và đạt được độ cao 9m sau 1 giây, đồng thời sau 8 giây quả bóng lại trở về độ cao 2m. Hỏi trong khoảng thời gian 6 giây kể từ lúc được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu? + Một cửa hàng bán sản phẩm với giá 12 USD. Với giá bán này, cửa hàng bán được khoảng 40 sản phẩm. Cửa hàng dự định giảm giá bán, ước tính cứ giảm 2 USD thì bán thêm được 20 sản phẩm. Xác định giá bán 1 sản phẩm để cửa hàng thu được lợi nhuận nhiều nhất, biết rằng giá mua về của một sản phẩm là 2 USD.