Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 10 năm 2020 - 2021 cụm THPT huyện Yên Dũng - Bắc Giang

Ngày 28 tháng 01 năm 2021, cụm THPT huyện Yên Dũng, tỉnh Bắc Giang tổ chức kỳ thi học sinh giỏi cấp cơ sở môn Toán 10 năm học 2020 – 2021. Đề HSG Toán 10 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang (mã đề 101 và mã đề 102) được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề HSG Toán 10 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Hon đa Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá 32 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 400 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm tăng thêm 100 chiếc. Hỏi doanh nghiệp phải định giá bán mới là bao nhiêu triệu đồng để sau khi đã thực hiện giảm giá, lợi nhuận thu được là cao nhất? + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2 m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó đạt độ cao 6m. Hỏi sau bao lâu thì quả bóng sẽ chạm đất kể từ khi được đá lên (tính chính xác đến hàng phần trăm? + Lớp 10C có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hoá, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hoá, 2 học sinh giỏi cả Lý và Hoá, 1 học sinh giỏi cả 3 môn Toán, Lý, Hoá. Hỏi số học sinh giỏi ít nhất một môn (Toán, Lý, Hoá) của lớp 10C là?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG lớp 10 môn Toán năm 2022 2023 lần 1 trường chuyên KHTN Hà Nội
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 lần 1 trường chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 10 năm 2022 – 2023 lần 1 trường chuyên KHTN Hà Nội Đề thi HSG Toán lớp 10 năm 2022 – 2023 lần 1 trường chuyên KHTN Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán lớp 10 năm học 2022 – 2023 lần 1 của trường THPT chuyên KHTN, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 08 tháng 08 năm 2022. Dưới đây là một số câu hỏi trong đề thi HSG Toán lớp 10 năm 2022 – 2023 lần 1 trường chuyên KHTN – Hà Nội: 1. Tìm tất cả các số nguyên n sao cho 5n – 1, 55n + 11 là hai số chính phương và 55n^2 – 149 là số nguyên tố. 2. Xét 100 số nguyên a1, a2, …, a99, a100 có tính chất sau: a1 = a100 = 0 và với mỗi số nguyên dương 2 < i < 99 ta đều có ai > (ai-1 + ai+1)/2. Hỏi giá trị nhỏ nhất có thể có của a23? 3. Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Điểm P thuộc cung nhỏ CD của (O). M là trung điểm CD. Lấy Q thuộc đường thẳng AD sao cho PQ và PM vuông góc. Trên BQ lấy R sao cho PR vuông góc với CD. a) Chứng minh rằng PB và OM cắt nhau trên đường tròn đường kính QM. b) Chứng minh rằng tứ giác PCRD và tam giác RAB có diện tích bằng nhau. c) Hỏi có tất cả bao nhiêu vị trí của P để RA vuông góc RB? Hãy giải thích. Hy vọng rằng các em học sinh sẽ nắm vững kiến thức và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề thi học sinh giỏi lớp 10 môn Toán năm 2021 2022 cụm trường THPT Hà Nội
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm 2021 2022 cụm trường THPT Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 cụm trường THPT Hà Nội Đề thi học sinh giỏi Toán lớp 10 cụm trường THPT Hà Nội Sytu rất hân hạnh giới thiệu đến quý thầy cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp cụm môn Toán lớp 10 năm học 2021 - 2022 của cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội. Đề thi này được biên soạn kỹ lưỡng, phản ánh đầy đủ kiến thức và kỹ năng mà học sinh cần phải nắm vững để đạt điểm cao trong môn Toán. Chúng tôi hy vọng rằng các em sẽ nắm bắt được cơ hội này để thể hiện khả năng và tiềm năng của mình trong lĩnh vực Toán học.
Đề thi chọn học sinh giỏi lớp 10 môn Toán năm 2021 2022 sở GD ĐT Hà Nam
Nội dung Đề thi chọn học sinh giỏi lớp 10 môn Toán năm 2021 2022 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi lớp 10 môn Toán năm 2021 2022 sở GD ĐT Hà Nam Đề thi chọn học sinh giỏi lớp 10 môn Toán năm 2021 2022 sở GD ĐT Hà Nam Đề thi chọn học sinh giỏi môn Toán lớp 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Nam bao gồm 1 trang với 5 bài toán dạng tự luận, và thời gian làm bài là 180 phút. Trích đề thi chọn học sinh giỏi Toán lớp 10 năm 2021 – 2022 sở GD&ĐT Hà Nam: Cho parabol \(y = x^2 + mx + m^2\) và đường thẳng \(2yx - my + m = 0\) (với m là tham số). Biết đường thẳng đó cắt parabol tại hai điểm phân biệt A và B. Tìm điều kiện của m để AB = 26. Cho phương trình \(2x^2 - bx + c = 0\) với b, c là số thực. Biết phương trình có hai nghiệm dương \(x_1, x_2\) thỏa mãn \(x_1 + x_2 = 4\). a) Chứng minh: \(b^2 - 4c > 0\) b) Tìm giá trị lớn nhất của biểu thức \(P = \frac{b^3}{6c} + \frac{b}{3} + 1\). Cho tam giác ABC nội tiếp đường tròn O bán kính R và có trọng tâm là G. Các đường thẳng AG, BG, CG theo thứ tự cắt đường tròn O tại điểm thứ hai là M, N, P. Biết \(\sin(A) + \sin(B) + \sin(C) = \frac{R}{2}\).
Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2021 2022 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2021 2022 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi Học sinh giỏi Toán lớp 10 tỉnh Hà Tĩnh năm 2021 - 2022 Đề thi Học sinh giỏi Toán lớp 10 tỉnh Hà Tĩnh năm 2021 - 2022 Để chuẩn bị cho kỳ thi Học sinh giỏi Toán lớp 10 cấp tỉnh năm học 2021 - 2022 do Sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức vào ngày 15 tháng 03 năm 2022, SYTU xin giới thiệu đến quý thầy cô và các em học sinh bộ đề thi dưới đây: 1. Cho tam giác ABC vuông tại A trong hệ tọa độ Oxy, gốc tọa độ O là trung điểm của cạnh BC. Đường phân giác trong góc B có phương trình (d): x + 2y - 5 = 0, đường thẳng AC đi qua điểm I(6;2). Hãy tìm tọa độ các đỉnh của tam giác ABC. 2. Cho tam giác ABC vuông tại A (BC = a, CA = b, AB = c), đường cao AH, I là điểm thuộc đoạn AH sao cho AI = 2IH. - a) Chứng minh rằng a^2IA + 2b^2IB + 2c^2IC = 0. - b) Biết góc ACB = 30°, tìm giá trị nhỏ nhất của biểu thức k = 2MA + 3MB + 7MC với M là điểm bất kỳ trong mặt phẳng chứa tam giác. 3. Cho hàm số f(x) = (x^2 + mx + 1)/(x^2 + x + 1) (m là tham số). Tìm m để với mọi a, b, c thì f(a), f(b), f(c) là độ dài ba cạnh của một tam giác. Đề thi Học sinh giỏi Toán lớp 10 tỉnh Hà Tĩnh năm 2021 - 2022 là cơ hội để các em thể hiện tài năng, kiến thức và kỹ năng giải quyết vấn đề. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!