Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Ngô Quyền - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Ngô Quyền, thành phố Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Ngô Quyền – Hải Phòng : + Trong kho của một đại lý bán hàng cấp một chứa 2000 chiếc Tivi của hãng Samsung. Do giao chỉ tiêu bán hàng, nên mỗi ngày nhân viên phải bán giao cho các đại lý cấp hai được 50 chiếc. Gọi y (chiếc) là số Tivi còn lại trong kho sau x (ngày) bán giao. a) Lập công thức biểu diễn hàm số y theo x. b) Hỏi sau 15 ngày thì số Tivi còn lại trong kho là bao nhiêu chiếc và sau bao nhiêu ngày thì đại lý cấp một bán giao hết 2000 chiếc Tivi cho các đại lý cấp hai? + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một người đi xe đạp khởi hành từ thành phố A đến thành phố B cách nhau 78(km), sau đó 1 giờ người thứ hai cũng đi xe đạp khởi hành từ thành phố B đến thành phố A, hai người gặp nhau tại một thị trấn C cách thành phố B là 36(km). Biết vận tốc người thứ hai đi nhanh hơn vận tốc người thứ nhất là 4 (km/h). Tính vận tốc của người thứ nhất. + Theo đơn đặt hàng, một kỹ sư đã thiết kế một chi tiết máy chất liệu bằng kim loại dạng hình trụ có bán kính đường tròn đáy là 5 (cm), chiều cao bằng đường kính đáy. Chi tiết máy có dạng hình trụ này được khoét rỗng hai đầu bằng hai nửa hình cầu như hình vẽ. Hãy tính diện tích toàn bộ bề mặt nhìn thấy của chi tiết đó?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tuyển sinh lớp 10 đợt 2 năm 2019 trường Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối lớp 9 nội dung đề thi thử Toán tuyển sinh vào lớp 10 đợt 2 năm 2019 trường THPT Thăng Long – Hà Nội, kỳ thi được diễn ra vào Chủ Nhật ngày 21 tháng 04 năm 2019, đề thi gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài trong 120 phút (không kể thời giam giáo viên coi thi phát đề). Trích dẫn đề thi thử Toán tuyển sinh lớp 10 đợt 2 năm 2019 trường Thăng Long – Hà Nội : + Hai người thợ làm chung một công việc với năng suất đã định và dự kiến sẽ xong trong 10 ngày. Họ làm chung với nhau được 8 ngày thì người thứ nhất được điều động đi làm công việc khác, người thứ hai tiếp tục làm đến khi hoàn thành công việc. Từ khi bắt đầu làm công việc một mình, do cải tiến kỹ thuật nên năng suất tăng gấp đôi vì vậy người thứ hai đã làm xong phần việc còn lại trong 3,5 ngày. Hỏi nếu mỗi người làm một mình thì sau bao nhiêu ngày sẽ hoàn thành công việc với năng suất đã định ban đầu. [ads] + Cho biểu thức A và B với x > 0. 1) Tính giá trị của biểu thức B khi x = 9. 2) Đặt P = A.B, rút gọn biểu thức P và so sánh P với 1. 3) Tìm x thuộc R để P có giá trị là số nguyên. + Cho điểm A nằm ngoài đường tròn (O;R). Vẽ các tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC, điểm M thuộc dây cung BC, đường thẳng AM cắt đường tròn (O) tại D và E (D nằm giữa A và M), điểm N là trung điểm của dây cung DE. 1) Chứng minh năm điểm A, B, C, O và N cùng thuộc một đường tròn. 2) Chứng minh BOD =2.ANC và tam giác AMH đồng dạng với tam giác AON. 3) Chứng minh AB^2 = AD.AE và tứ giác DHOE là tứ giác nội tiếp. 4) Khi M di chuyển trên dây cung BC, xác định vị trí của điểm M để tổng 1/√AD + 1/√AE lớn nhất.
Đề thi thử lớp 10 năm 2019 - 2020 môn Toán trường Trần Nhân Tông - Hà Nội
Chủ Nhật ngày 07 tháng 04 năm 2019, trường THPT Trần Nhân Tông – Hà Nội tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 khối THPT năm học 2019 – 2020 dành cho các em học sinh lớp 9. Kỳ thi nhằm giúp các em học sinh lớp 9 đăng ký dự thi được tham gia thử sức, qua đó các em sẽ nắm được lực học hiện tại của bản thân, đồng thời làm quen với kỳ thi và nắm được dạng đề môn Toán. Đề thi thử lớp 10 năm 2019 – 2020 môn Toán trường Trần Nhân Tông – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử lớp 10 năm 2019 – 2020 môn Toán trường Trần Nhân Tông – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một hình chữ nhật có diện tích bằng 120m. Nếu tăng chiều rộng thêm 2m đồng thời giảm chiều dài đi 5m, thì thu được một hình vuông. Tìm chiều dài và chiều rộng của hình chữ nhật ban đầu theo mét. [ads] + Cho đường tròn (O) và dây cung BC cố định không đi qua O. A là một điểm di động trên cung lớn BC (AB < AC) sao cho tam giác ABC nhọn. Các đường cao BE, CF cắt nhau tại H. Gọi K là giao điểm của đường thẳng EF và đường thẳng BC. 1) Chứng minh tứ giác BCEF nội tiếp. 2) Chứng minh KB.KC = KE.KF. 3) Gọi M giao điểm của AK với đường tròn (O) (M khác A). Chứng minh MH vuông  góc với AK. 4) Chứng minh đường thẳng MH luôn đi qua một điểm cố định khi A di động trên cung lớn BC.
Đề thi thử Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Hồng Hà - Hà Nội
Thứ Tư ngày 03 tháng 04 năm 2019, trường THPT Hồng Hà – Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT năm học 2019 – 2019 môn Toán dành cho học sinh lớp 9 trên địa bàn thủ đô Hà Nội, đề được biên soạn dựa trên cấu trúc chung của các đề thi Toán tuyển sinh vào lớp 10 của sở GD&ĐT Hà Nội trong những năm gần đây. Đề thi thử Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Hồng Hà – Hà Nội có mã đề 006 được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi thử Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Hồng Hà – Hà Nội : + Cho hai đường thẳng d1: y = 1/3.x + m + 1/3 và d2: y = -2x – 6m + 5. a) Chứng minh d1 và d2 luôn cắt nhau tại một điểm M, tìm tọa độ của điểm M. b) Tìm m để giao điểm M của d1 và d2 nằm trên parabol (P): y = 9x^2. [ads] + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình. Tháng 2 năm 2019, hai tổ của một phân xưởng may sản xuất được 800 bộ quần áo, sang tháng 3 năm 2019 tổ một vượt mức 20%, tổ hai vì thiếu người nên giảm mức 15% do đó cuối tháng 3 cả hai tổ sản xuất được 785 bộ quần áo. Tính xem trong tháng hai mỗi tổ sản xuất được bao nhiêu bộ quần áo. + Cho đường tròn (O) và dây AB. Vẽ đường kính CD vuông góc với AB tại K (D thuộc cung nhỏ AB). Lấy điểm M thuộc cung nhỏ BC sao cho cung MC nhỏ hơn cung MB. Dây DM cắt AB tại F. Tia CM cắt đường thẳng AB tại E. a) Chứng minh tứ giác DKME nội tiếp. b) Chứng minh KE.KF = KC.KD. c) Tiếp tuyến tại M của (O) cắt AB tại I. Chứng minh tam giác IMF cân, từ đó suy ra IE = IF. d) Chứng minh FB/EB = KA/EK.
Đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long - Hà Nội
Nhằm giúp học sinh ôn tập, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020, ngày 24 tháng 02 năm 2019 vừa qua, trường THPT Thăng Long, Hà Nội đã tiến hành tổ chức kỳ thi thử môn Toán dành cho các em học sinh khối lớp 9. Đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long – Hà Nội gồm 1 trang, đề được biên soạn dựa vào cấu trúc đề Toán tuyển sinh vào lớp 10 THPT năm học 2018 – 2019 của sở GD&ĐT Hà Nội với 5 bài toán tự luận, học sinh làm bài trong 120 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Cho một hình chữ nhật biết khi tăng độ dài của chiều rộng lên 1 cm và chiều dài lên 4 cm thì diện tích hình chữ nhật sẽ tăng thêm 26 cm2 và khi tăng chiều rộng thêm 3 cm đồng thời giảm chiều dài đi 4 cm thì được hình vuông. Tính chiều dài và chiều rộng của hình chữ nhật đã cho. + Cho điểm A thuộc đường thẳng d và đường thẳng d, vuông góc với d tại A. Trên d, lấy điểm O và vẽ đường tròn tâm O bán kính R sao cho R < OA. Cho M là một điểm bất kỳ trên đường thẳng d, vẽ tiếp tuyến MB với đường tròn (O) (B là tiếp điểm). Vẽ dây BC của đường tròn (O) sao cho BC vuông góc với OM và cắt OM tại N. 1) Chứng minh MC là tiếp tuyến của đường tròn (O). 2) Chứng minh năm điểm A, B, C, O, M thuộc cùng một đường tròn. 3) Chứng minh BC.OM = 2BO.BM. Xác định vị trí của điểm M trên đường thẳng d sao cho diện tích từ giác OBMC đạt giá trị nhỏ nhất. 4) Chứng minh rằng khi M di chuyển trên đường thẳng d thì điểm N luôn thuộc một đường cố định.