Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Chuyên đề góc và số đo góc
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề góc và số đo góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu khái niệm góc, góc nhọn, góc tù, góc vuông, góc bẹt. + Nắm được khái niệm điểm nằm trong góc. Kỹ năng: + Biết cách vẽ góc, đặt tên góc, đọc tên góc. + Nhận biết điểm nằm trong góc. + Nhận biết góc nhọn, góc vuông, góc tù, góc bẹt. + Biết cách đo góc bằng thước đo góc, so sánh hai góc. I. LÍ THUYẾT TRỌNG TÂM 1. Góc. Góc tạo bởi hai tia chung gốc: + Gốc chung là đỉnh của góc. Hai tia là hai cạnh của góc. + Đặc biệt: góc bẹt là góc có hai cạnh là hai tia đối nhau. Góc xOy được kí hiệu là xOy hoặc yOx. Điểm nằm trong góc: + Hai tia Ox và Oy không đối nhau, điểm M gọi là điểm nằm trong góc xOy hay M nằm trong góc xOy nếu OM nằm giữa hai tia Ox và Oy. 2. Số đo góc. Đo góc: – Dụng cụ: Thước đo góc. – Cách đo góc xOy: + Bước 1. Đặt thước đo góc sao cho tâm của thước trùng với gốc O của góc, một cạnh của góc đi qua vạch 0. + Bước 2. Xem cạnh thứ hai của góc đi qua vạch nào của thước, giả sử là vạch 120 thì xOy 120. So sánh hai góc: + Nếu hai góc A và B có số đo bằng nhau thì hai góc đó bằng nhau, ta viết A = B. + Nếu số đo của góc A nhỏ hơn số đo của góc B thì góc A nhỏ hơn góc B ta viết A B. Góc vuông, góc nhọn, góc tù: + Góc có số đo bằng 90 là góc vuông. + Góc có số đo nhỏ hơn 90 là góc nhọn. + Góc có số đo lớn hơn góc vuông nhưng nhỏ hơn góc bẹt là góc tù. + Góc có số đo bằng 180 là góc bẹt. II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định góc, vẽ hình. Hai tia bất kì chung gốc đều tạo thành một góc. Dạng 2 : Số đo góc. Bài toán 1: Đo góc. Đổi số đo góc. Đơn vị đo góc. Các bước đo góc: + Đặt thước đo góc để tâm thước trùng với góc cần đo. + Vạch 0 trên thước nằm trên một cạnh. + Cạnh còn lại của góc đi qua vạch nào của thước đo góc thì đó là số đo của góc. Bài toán 2. So sánh góc. Trong hai góc, góc nào có số đo lớn hơn thì lớn hơn. Dạng 3 : Nhận biết góc nhọn, góc vuông, góc tù. Sử dụng các khái niệm góc vuông, góc nhọn, góc tù.
Chuyên đề nửa mặt phẳng
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nửa mặt phẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu khái niệm nửa mặt phẳng, khái niệm hai nửa mặt phẳng đối nhau. + Nhận biết được nửa mặt phẳng, gọi tên được các nửa mặt phẳng từ hình vẽ cho trước. + Nhận biết được các điểm thuộc cùng nửa mặt phẳng. + Nhận biết được tia nằm giữa hai tia. Kỹ năng: + Vẽ được nửa mặt phẳng, điểm theo mô tả. + Mô tả được hình vẽ liên quan đến nửa mặt phẳng, các điểm thuộc hoặc không thuộc nửa mặt phẳng. I. LÍ THUYẾT TRỌNG TÂM Nửa mặt phẳng bờ a: Hình gồm đường thẳng a và một phần mặt phẳng bị chia ra bởi a được gọi là nửa mặt phẳng bờ a. Hai nửa mặt phẳng đối nhau: Hai nửa mặt phẳng có chung bờ được gọi là hai nửa mặt phẳng đối nhau. Chú ý: Bất kì đường thẳng nào trên mặt phẳng cũng là bờ chung của hai nửa mặt phẳng đối nhau. Tia nằm giữa hai tia: Cho ba tia Ox, Oy, Oz. M thuộc Ox; N thuộc Oy. Oz nằm giữa tia Ox và Oy nếu tia Oz cắt đoạn thẳng MN. II. CÁC DẠNG BÀI TẬP Dạng 1 : Vẽ hình. Bài toán 1. Mô tả vẽ hình. Bài toán 2. Vẽ hình. Dạng 2 : Nhận biết đoạn thẳng cắt hay không cắt đường thẳng cho trước. Nếu hai điểm M và N nằm khác phía so với đường thẳng a thì đoạn thẳng MN cắt đường thẳng a và ngược lại. Nếu hai điểm A và B nằm cùng phía so với đường thẳng a thì đoạn thẳng AB không cắt đường thẳng a và ngược lại. Dạng 3 : Nhận biết tia nằm giữa hai tia. Xét ba tia Ox, Oy, Oz chung gốc. Lấy điểm N bất kì trên Ox, điểm M bất kì trên Oy (M N không trùng điểm O). Nếu tia Oz cắt đoạn thẳng MN thì ta nói tia Oz nằm giữa hai tia Ox và Oy.
Chuyên đề trung điểm của đoạn thẳng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trung điểm của đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được khái niệm trung điểm của đoạn thẳng. Kĩ năng: + Vận dụng được tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng để tính độ dài đoạn thẳng. + Chứng minh được một điểm là trung điểm của một đoạn thẳng. I. LÍ THUYẾT TRỌNG TÂM 1. Trung điểm của đoạn thẳng. Định nghĩa: Trung điểm M của đoạn thẳng AB là điểm nằm giữa A, B và cách đều A, B. 2. Cách vẽ trung điểm của đoạn thẳng. Cách 1. Vẽ theo độ dài. Để vẽ trung điểm M của đoạn thẳng AB a cm ta vẽ điểm M trên tia AB sao cho a AM cm 2. Cách 2. Gấp giấy. Gấp giấy sao cho điểm A trùng với điểm B. Nếp gấp cắt đoạn AB tại trung điểm M của AB. II. CÁC DẠNG BÀI TẬP Dạng 1 . Tính độ dài đoạn thẳng. Áp dụng tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng. + Nếu M là trung điểm của đoạn thẳng AB thì 2 AB MA MB. + Nếu điểm M nằm giữa hai điểm A và B thì MA MB AB. Dạng 2 . Chứng minh một điểm là trung điểm của một đoạn thẳng. Để chứng minh điểm M là trung điểm của đoạn thẳng AB ta cần chứng minh: Cách 1: + Điểm M nằm giữa A và B (hoặc AM MB AB). + MA = MB. Cách 2: Chứng minh 2 AB MA MB.
Chuyên đề đoạn thẳng và độ dài đoạn thẳng
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đoạn thẳng và độ dài đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được khái niệm đoạn thẳng, độ dài đoạn thẳng. Kĩ năng: + Đếm được số đoạn thẳng tạo thành từ các điểm cho trước. + Chỉ ra được tính thẳng hàng và điểm nằm giữa hai điểm. + Tính được độ dài đoạn thẳng sử dụng công thức cộng độ dài đoạn thẳng. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đoạn thẳng tạo thành từ các điểm cho trước. Dạng 2 : Xét tính thẳng hàng và điểm nằm giữa hai điểm còn lại. Điểm nằm giữa hai điểm: + Nếu OA và OB là hai tia đối nhau thì O nằm giữa A và B. + Nếu OA và OB là hai tia trùng nhau và OA OB thì A nằm giữa O và B. + Nếu MA MB AB thì M nằm giữa A và B và ngược lại. + Điểm M thuộc đoạn thẳng AB thì M nằm giữa A và B. Dạng 3 : Độ dài đoạn thẳng. Tính độ dài đoạn thẳng: Khi điểm M nằm giữa hai điểm A và B thì MA MB AB và ngược lại. Vẽ đoạn thẳng cho biết độ dài: + Vẽ đoạn thẳng trên tia: Trên tia Ox bao giờ cũng vẽ được một và chỉ một điểm M sao cho OM a (đơn vị độ dài). + Vẽ hai đoạn thẳng trên tia: Trên tia Ox vẽ hai đoạn thẳng OM a ON b. Nếu 0 a b thì điểm M nằm giữa hai điểm O và N.