Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề góc nội tiếp

Nội dung Tài liệu lớp 9 môn Toán chủ đề góc nội tiếp Bản PDF - Nội dung bài viết Tài liệu Tạo Góc Nội Tiếp Lớp 9 Môn ToánLý Thuyết Về Góc Nội TiếpBài Tập Thực Hành Tài liệu Tạo Góc Nội Tiếp Lớp 9 Môn Toán Chào mừng các bạn học sinh lớp 9 đến với tài liệu chuyên đề về góc nội tiếp trong môn Toán. Tài liệu này bao gồm 09 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập về chủ đề góc nội tiếp trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để giúp các bạn tự học và ôn tập hiệu quả. Lý Thuyết Về Góc Nội Tiếp 1. Định nghĩa: Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn. Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn. 2. Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. 3. Hệ quả: a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau và ngược lại. b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. c) Góc nội tiếp (nhỏ hơn hoặc bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. d) Góc nội tiếp chắn nửa đường tròn là góc vuông. Bài Tập Thực Hành Để làm quen với kiến thức về góc nội tiếp, chúng ta sẽ thực hành qua các dạng bài tập sau: Dạng 1: Chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau bằng cách áp dụng hệ quả trong phần lý thuyết. Dạng 2: Chứng minh hai đường thẳng vuông góc, ba điểm thẳng hàng bằng cách sử dụng kiến thức về góc nội tiếp. Nhằm giúp các bạn hiểu rõ hơn về chủ đề này, tài liệu này đã được biên soạn cẩn thận và chi tiết. Chúc các bạn học tốt và thành công trên con đường học tập!

Nguồn: sytu.vn

Đọc Sách

Các dạng toán về căn bậc hai và căn bậc ba
Tài liệu gồm 44 trang, phân loại và hướng dẫn giải các dạng toán về căn bậc hai và căn bậc ba, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 (tập 1) phần Đại số chương 1. VẤN ĐỀ 1. CĂN BẬC HAI. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tìm căn bậc hai và căn bậc hai số học của một số. Dạng 2. So sánh các căn bậc hai số học. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 2. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC √A^2 = |A| (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tính giá trị của biểu thức chứa căn bậc hai. Dạng 2. Rút gọn biểu thức chứa căn bậc hai. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 3. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC √A^2 = |A| (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 3. Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng 4. Giải phương trình chứa căn bậc hai. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 4. LIÊN HỆ PHÉP NHÂN, PHÉP CHIA VỚI PHÉP KHAI PHƯƠNG (PHẦN 1). A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1. Thực hiện phép tính. Dạng 2. Rút gọn biểu thức. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 5. LIÊN HỆ PHÉP NHÂN, PHÉP CHIA VỚI PHÉP KHAI PHƯƠNG (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 4. Rút gọn biểu thức. Dạng 5. Giải phương trình. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI. A. TÓM TẮT LÍ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2. So sánh các căn bậc hai. Dạng 3. Rút gọn biểu thức chứa căn bậc hai. Dạng 4. Trục căn thức ở mẫu. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 7. RÚT GỌN BIỂU THỨC CHỨA CĂN VÀ CÁC BÀI TOÁN LIÊN QUAN. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Rút gọn biểu thức chứa căn bậc hai. Dạng 2. Chứng minh đẳng thức chứa căn thức bậc hai. Dạng 3. Rút gọn biểu thức và các bài toán liên quan. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 8. CĂN BẬC BA. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Thực hiện phép tính có chứa căn bậc ba. Dạng 2. So sánh các căn bậc ba. Dạng 3. Giải phương trình chứa căn bậc ba. C. BÀI TẬP VỀ NHÀ. ÔN TẬP CHỦ ĐỀ 1 (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. 1. Căn bậc hai số học. 2. Căn thức bậc hai. 3. Liên hệ giữa phép nhân, phép chia với phép khai phương. 4. Biến đổi đơn giản biểu thức chứa căn bậc hai. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tìm điều kiện cho các biểu thức có nghĩa. Dạng 2. Tính và rút gọn biểu thức. Dạng 3. Giải phương trình và bất phương trình. ÔN TẬP CHỦ ĐỀ 1 (PHẦN 2). A. TÓM TẮT LÍ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 4. Tìm các giá trị nguyên của biến để các biểu thức cho trước có giá trị nguyên. Dạng 5. Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức. Dạng 6. Rút gọn biểu thức và các bài toán liên quan. Một số bài tập nâng cao. HƯỚNG DẪN – ĐÁP SỐ. VẤN ĐỀ 1. VẤN ĐỀ 2. VẤN ĐỀ 3. VẤN ĐỀ 4. VẤN ĐỀ 5. VẤN ĐỀ 6. VẤN ĐỀ 7. VẤN ĐỀ 8. ÔN TẬP CHỦ ĐỀ 1 (PHẦN 1). ÔN TẬP CHỦ ĐỀ 1 (PHẦN 2).
Các dạng toán hàm số $y ax2$ $(a ne 0)$, phương trình bậc hai một ẩn
Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, phân dạng và tuyển chọn các bài tập chuyên đề hàm số $y = a{x^2}$ $(a \ne 0)$, phương trình bậc hai một ẩn; giúp học sinh lớp 9 tham khảo khi học chương trình Đại số 9 chương 4 (Toán 9 tập 2). 1 Hàm số y = ax2 (a khác 0). A Kiến thức trọng tâm. B Dạng bài tập cơ bản. + Dạng 1. Tính giá trị của hàm số. + Dạng 2. Tính chất đồng biến, nghịch biến. + Dạng 3. Các bài toán thực tế. + Dạng 4. Đồ thị hàm số y = ax2. 2 Phương trình bậc hai một ẩn. A Kiến thức trọng tâm. B Các dạng bài tập cơ bản. + Dạng 1. Giải phương trình bậc hai. + Dạng 2. Điều kiện có nghiệm của phương trình bậc hai. + Dạng 3. Sự tương giao của hai đồ thị. + Dạng 4. Các bài toán nâng cao khác. 3 Hệ thức Vi-ét và ứng dụng. A Kiến thức trọng tâm. B Các dạng bài tập cơ bản. + Dạng 1. Tìm giá trị của biểu thức nghiệm đối xứng. + Dạng 2. Tìm hai số biết tổng và tích của chúng. + Dạng 3. Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào m. + Dạng 4. Xét dấu các nghiệm. 4 Phương trình quy về phương trình bậc hai. A Kiến thức trọng tâm. B Các dạng bài tập cơ bản. + Dạng 1. Phương trình trùng phương, phương trình chứa ẩn ở mẫu và phương trình tích. + Dạng 2. Phương trình trị tuyệt đối và phương trình căn. + Dạng 3. Phương pháp đặt ẩn phụ và cách khác 5 Giải bài toán bằng cách lập phương trình. A Kiến thức trọng tâm. B Các dạng bài tập cơ bản. + Dạng 1. Bài toán chuyển động. + Dạng 2. Bài toán về số và chữ số. + Dạng 3. Bài toán vòi nước. + Dạng 4. Bài toán có nội dung hình học. + Dạng 5. Bài toán về phần trăm – năng suất.
Bài toán chứa tham số trong phương trình bậc hai
Tài liệu gồm 38 trang, hướng dẫn phương pháp giải bài toán chứa tham số trong phương trình bậc hai, giúp học sinh rèn luyện khi học chương trình Đại số 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. I – KIẾN THỨC CƠ BẢN 1. Ứng dụng hệ thức Vi-ét. + Điều kiện phương trình bậc hai có hai nghiệm trái dấu. + Điều kiện phương trình bậc hai có hai nghiệm phân biệt cùng dấu. + Điều kiện phương trình bậc hai có hai nghiệm phân biệt dương. + Điều kiện phương trình bậc hai có hai nghiệm phân biệt âm. 2. Các hệ thức thường gặp. II – CÁC VÍ DỤ MINH HỌA Gồm 77 ví dụ minh họa hay và khó, có đáp án và lời giải chi tiết.
Chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 4 bài số 3. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Hình cầu. + Khi quay nửa hình tròn tâm O, bán kính R một vòng quanh đường kính AB cố định ta thu được một hình cầu. + Nửa đường tròn trong phép quay nói trên tạo thành một mặt cầu. + Điểm O gọi là tâm, R là bán kính của hình cầu hay mặt cầu đó. 2. Cắt hình cầu bởi một mặt phẳng. + Khi cắt hình cầu bởi một mặt phẳng ta được một hình tròn. + Khi cắt mặt cầu bán kính R bởi một mặt phẳng ta được một đường tròn, trong đó: đường tròn đó có bán kính R nếu mặt phẳng đi qua tâm (gọi là đường tròn lớn). 3. Diện tích, thể tích. Cho hình cầu bán kính R: + Diện tích mặt cầu: S = 4piR^2. + Thể tích hình cầu: V = 4/3piR^3. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Phương pháp giải: Áp dụng các công thức S = 4piR^2 và V = 4/3piR^3 để tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng các công thức trên và các kiến thức đã học để tính các đại lượng chưa biết rồi từ đó tính diện tích mặt cầu, thể tích hình cầu. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO