Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 1 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Huệ - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Huệ, quận Tân Phú, thành phố Hồ Chí Minh; đề thi gồm 02 trang, hình thức tự luận với 07 bài toán, thời gian làm bài 90 phút. Trích dẫn Đề học kỳ 1 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Huệ – TP HCM : + Nhà trường dự định tổ chức cho x học sinh (x > 50) tham quan tại một khu du lịch, giá vé vào cổng cho mỗi em là 180000 đồng. Nếu số lượng học sinh tham quan nhiều hơn 50 học sinh thì từ học sinh thứ 51 trở đi mỗi em được giảm 20% giá vé. Gọi y (nghìn đồng) là tổng số tiền phải trả để mua vé vào cổng cho x em học sinh. a) Viết hàm số biểu diễn y theo x. b) Nếu nhà trường tổ chức cho 120 học sinh tham quan khu du lịch trên thì tổng số tiền mua vé vào cổng cho các em là bao nhiêu? + Chiều dài của một cái bập bênh là 5,2 (m). Khi một đầu của cái bập bênh chạm đất thì cái bập bênh tạo với mặt đất một góc 23 (như hình vẽ bên). Hỏi đầu còn lại của cái bập bênh cách mặt đất bao nhiêu mét? (kết quả làm tròn đến hàng đơn vị). + Tại một cửa hàng điện máy, có 80 chiếc máy lạnh loại A với giá niêm yết của mỗi chiếc là 7790000 (đồng). Để kích cầu tiêu dùng, cửa hàng đã thực hiện chương trình khuyến mại giảm giá 40% so với giá niêm yết cho tất cả các sản phẩm tại cửa hàng. Sau vài ngày áp dụng chương trình khuyến mại trên, cửa hàng đã bán được 40 chiếc máy lạnh loại A và cửa hàng quyết định giảm thêm 20% so với giá đã giảm lần đầu cho số máy lạnh loại A còn lại. a) Tính số tiền cửa hàng thu được khi bán hết 80 chiếc máy lạnh loại A. b) Biết giá vốn của mỗi chiếc máy lạnh loại A là 3500000 (đồng). Hỏi sau khi bán hết 80 chiếc máy lạnh trên thì cửa hàng lời, lỗ hay hòa vốn? Giải thích.

Nguồn: toanmath.com

Đọc Sách

Đề thi cuối học kỳ 1 Toán 9 năm 2020 - 2021 phòng GDĐT Quận 4 - TP HCM
Đề thi cuối học kỳ 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Quận 4, thành phố Hồ Chí Minh gồm 02 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề thi cuối học kỳ 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 4 – TP HCM : + Từ đài quan sát được đặt trên đỉnh của một tòa nhà (điểm A) nhìn xuống hai điểm B và C ở hai bên bờ sông được mô tả như hình vẽ. Biết chiều cao của tòa nhà là AH = 461 mét, khi nhìn xuống hai điểm B và C thì góc HAB và góc HAC có số đo lần lượt là 42 độ và 55°. Hãy tính khoảng cách hai điểm B và C hai bên bờ sông (làm tròn kết quả đến mét). + Sau buổi lễ chào mừng “Ngày nhà giáo Việt Nam 20/11” lớp 9A cùng nhau đi ăn kem ở một quán gần trường. Nhân dịp quán mới khai trương nên có khuyến mãi, bắt đầu từ ly thứ 5 giá mỗi ly kem giảm 4 000 đồng so với giá ban đầu. Lớp 9A mua 40 ly kem, khi tính tiền chủ cửa hàng thấy lớp mua nhiều nên giảm thêm 5% số tiền trên hóa đơn vì vậy số tiền lớp 9A chỉ phải trả là 471 200 đồng. a. Tính số tiền chủ cửa hàng đã giảm thêm 5% trên hóa đơn cho lớp 9A. b. Hỏi giá của một ly kem ban đầu là bao nhiêu? + Hai trường A, B có 250 học sinh lớp 9 dự thi vào lớp 10, kết quả có 210 học sinh đã trúng tuyển. Tính riêng tỉ lệ thì trường A trúng tuyển vào lớp 10 đạt 80%, trường B trúng tuyển vào lớp 10 đạt 90%. Hỏi mỗi trường có bao nhiêu học sinh lớp 9 dự thi vào lớp 10.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Tây Hồ - Hà Nội
Thứ Ba ngày 22 tháng 12 năm 2020, phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kì 1 môn Toán lớp 9 năm học 2020 – 2021. Đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Tây Hồ – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Tây Hồ – Hà Nội : + Một người đứng trên ngọn hải đăng cao 100 mét quan sát hai lần một con thuyền đang đi về phía ngọn hải đăng. Lần thứ nhất người đó nhìn thấy thuyền với góc hạ là 20 độ, lần thứ hai người đó nhìn thấy thuyền với góc hạ là 30 độ. Hỏi con thuyền đã đi được bao nhiêu mét giữa hai lần quan sát? (làm tròn đến mét). + Cho đường tròn (O;R), đường kính AB. Qua điểm A và điểm B lần lượt vẽ đường thẳng d và d ‘ là hai tiếp tuyến của đường tròn. Lấy điểm M bất kì thuộc đường tròn (O) (M khác A và B). Qua M kẻ tiếp tuyến với đường tròn (O) cắt d và d ‘ theo thứ tự tại C và D. a) Chứng minh bốn điểm A, C, M, O thuộc một đường tròn. b) Chứng minh tam giác OCD vuông và 4.AC.BD = AB^2. c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác COD. + Cho các số thực dương x, y thỏa mãn xy > 2020x + 2021y. Chứng minh rằng: x + y > (√2020 + √2021)^2.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tia tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên da, không trùng với A. Gọi E là điểm đối xứng với A qua OM. a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O). b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh rằng I là tâm đường tròn nội tiếp của tam giác AME. c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R. d) Gọi C là giao điểm của BE và tia Ox, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh rằng A, D, P thẳng hàng. + Giải phương trình: x2 – 1 = 2√(2x + 1). + Cho a, b là các số thực dương thỏa mãn a – √a = √b – b. Tìm giá trị nhỏ nhất của biểu thức: P = a2 + b2 + 2020/(√a + √b)^2.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Sóc Sơn, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Sóc Sơn – Hà Nội : + Một máy bay cất cánh theo phương có góc nâng là 0 23 so với mặt đất. Hỏi muốn đạt độ cao 250m so với mặt đất thì máy bay phải bay lên một đoạn đường là bao nhiêu mét? + Cho nửa đường tròn O R; đường kính AB. Lấy điểm C thuộc nửa đường tròn (C khác A và B). Kẻ OE vuông góc với CB (E thuộc CB). Kẻ tiếp tuyến Bx của nửa đường tròn, tiếp tuyến này cắt OE tại D. a) Chứng minh 2 OE OD R. b) Chứng minh CD là tiếp tuyến của O. c) Tứ giác ACDO là hình gì? Vì sao? d) Kẻ CH vuông góc với AB, CH cắt AD tại K. Chứng minh K là trung điểm của AD. + Cho hàm số 2 y m x m 1 4 (với m 1) có đồ thị là đường thẳng d. 1) Với giá trị nào của m thì hàm số đã cho nghịch biến? 2) Tìm m để đường thẳng d cắt đường thẳng d y x 2 5 tại một điểm trên trục tung. 3) Tìm m để đường thẳng d đi qua điểm A 1 3.