Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán

Tài liệu gồm 71 trang phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán theo các đơn vị kiến thức tương ứng với các nội dung bài học. Tài liệu được biên soạn theo hình thức LaTex, các câu hỏi và bài tập trong tài liệu đều được phân tích và giải chi tiết. Tài liệu thích hợp cho các em học sinh khối 12 dùng để rèn luyện chuẩn bị cho kỳ thi THPT Quốc gia năm 2019 môn Toán. Nội dung tài liệu phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán : ĐẠI SỐ & GIẢI TÍCH 11 Chương 2 . Tổ hợp. Xác suất. Nhị thức Newton §1. Hoán vị-chỉnh hợp-tổ hợp Dạng toán. Bài toán chỉ sử dụng P hoặc C hoặc A. §2. Nhị thức Newton Dạng toán. Tìm hệ số, số hạng trong khai triển nhị thức Newton. §3. Xác suất của biến cố Dạng toán 1. Tính xác suất bằng định nghĩa. Dạng toán 2. Tính xác suất bằng công thức nhân. Chương 3 . Dãy số – Cấp số cộng- Cấp số nhân §1. Dãy số Dạng toán. Tìm hạng tử trong dãy số. Chương 4 . Giới hạn §1. Giới hạn của dãy số Dạng toán. Dùng phương pháp đặt thừa số. §2. Giới hạn của hàm số Dạng toán. Dạng vô cùng chia vô cùng, số chia vô cùng. HÌNH HỌC 11 Chương 3 . Véc-tơ trong không gian. Quan hệ vuông góc trong không gian §1. Hai đường thẳng vuông góc Dạng toán. Xác định góc giữa hai đường thẳng (dùng định nghĩa). §2. Đường thẳng vuông góc với mặt phẳng Dạng toán 1. Xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng, đường thẳng và đường thẳng. Dạng toán 2. Xác định góc giữa hai mặt phẳng, đường thẳng và mặt phẳng. §3. Hai mặt phẳng vuông góc Dạng toán. Xác định góc giữa hai mặt phẳng, đường và mặt. §4. Khoảng cách Dạng toán 1. Tính độ dài đoạn thẳng và khoảng cách từ một điểm đến một đường thẳng. Dạng toán 2. Khoảng cách từ một điểm đến một mặt phẳng. Dạng toán 3. Khoảng cách giữa hai đường thẳng chéo nhau. GIẢI TÍCH 12 Chương 1 . Ứng dụng đạo hàm để khảo sát hàm số §1. Sự đồng biến và nghịch biến của hàm số Dạng toán 1. Xét tính đơn điệu của hàm số cho bởi công thức. Dạng toán 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm tham số m để hàm số đơn điệu. Dạng toán 4. Ứng dụng tính đơn điệu để chứng minh bất đẳng thức, giải phương trình, bất phương trình, hệ phương trình. §2. Cực trị của hàm số Dạng toán 1. Tìm cực trị của hàm số cho bởi công thức. Dạng toán 2. Tìm cực trị dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. Dạng toán 4. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. Dạng toán 5. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. §3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Dạng toán 1. GTLN, GTNN trên đoạn [a;b]. Dạng toán 2. GTLN, GTNN trên khoảng. Dạng toán 3. Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình. Dạng toán 4. Bài toán ứng dụng, tối ưu, thực tế. §4. Đường tiệm cận Dạng toán 1. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng toán 2. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. §5. Khảo sát sự biến thiên và vẽ đồ thị hàm số Dạng toán 1. Nhận dạng đồ thị, bảng biến thiên. Dạng toán 2. Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng toán 3. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng toán 4. Phương trình tiếp tuyến của đồ thị hàm số. Chương 2 . Hàm số lũy thừa – Hàm số mũ và Hàm số lô-ga-rít §1. Lũy thừa Dạng toán 1. Tính giá trị của biểu thức chứa lũy thừa. Dạng toán 2. Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa. §2. Hàm số lũy thừa Dạng toán 1. Tập xác định của hàm số chứa hàm lũy thừa. Dạng toán 2. Đạo hàm hàm số lũy thừa. §3. Lô-ga-rít Dạng toán 1. Tính giá trị biểu thức chứa lô-ga-rít. Dạng toán 2. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng toán 3. So sánh các biểu thức lô-ga-rít. §4. Hàm số mũ. Hàm số lô-ga-rít Dạng toán 1. Tập xác định của hàm số mũ, hàm số lô-ga-rít. Dạng toán 2. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng toán 3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số mũ, lô-ga-rít. Dạng toán 4. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. Dạng toán 5. Bài toán thực tế. §5. Phương trình mũ và phương trình lô-ga-rít Dạng toán 1. Phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. Dạng toán 4. Phương pháp hàm số, đánh giá. Dạng toán 5. Bài toán thực tế. §6. Bất phương trình mũ và lô-ga-rít Dạng toán 1. Bất phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. [ads] Chương 3 . Nguyên hàm, tích phân và ứng dụng §1. Nguyên hàm Dạng toán 1. Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp nguyên hàm từng phần. §2. Tích phân Dạng toán 1. Định nghĩa, tính chất và tích phân cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp tích phân từng phần. Dạng toán 4. Tích phân của hàm ẩn. Tích phân đặc biệt. §3. Ứng dụng của tích phân Dạng toán 1. Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng toán 2. Bài toán thực tế sử dụng diện tích hình phẳng. Dạng toán 3. Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng toán 4. Thể tích tính theo mặt cắt S(x). Dạng toán 5. Bài toán thực tế và ứng dụng thể tích. Dạng toán 6. Ứng dụng tích phân vào bài toán liên môn (lý, hóa, sinh, kinh tế). Chương 4 . Số phức §1. Khái niệm số phức Dạng toán 1. Xác định các yếu tố cơ bản của số phức. Dạng toán 2. Biểu diễn hình học cơ bản của số phức. Dạng toán 3. Câu hỏi lý thuyết. §2. Phép cộng, trừ và nhân số phức Dạng toán 1. Thực hiện phép tính. Dạng toán 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng toán 3. Bài toán tập hợp điểm. §3. Phép chia số phức Dạng toán 1. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. Dạng toán 2. Bài toán tập hợp điểm. §4. Phương trình bậc hai hệ số thực Dạng toán 1. Giải phương trình. Tính toán biểu thức nghiệm. Dạng toán 2. Phương trình quy về bậc hai. §5. Cực trị Dạng toán. Phương pháp hình học. HÌNH HỌC 12 Chương 1 . Khối đa diện §1. Khái niệm về khối đa diện Dạng toán 1. Nhận diện hình đa diện, khối đa diện. Dạng toán 2. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. Dạng toán 3. Phép biến hình trong không gian. §2. Khối đa diện lồi và khối đa diện đều Dạng toán. Nhận diện loại đa diện đều. §3. Khái niệm về thể tích của khối đa diện Dạng toán 1. Diện tích xung quanh, diện tích toàn phần của khối đa diện. Dạng toán 2. Tính thể tích các khối đa diện. Dạng toán 3. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. Chương 2 . Mặt nón, mặt trụ, mặt cầu §1. Khái niệm về mặt tròn xoay Dạng toán 1. Thể tích khối nón, khối trụ. Dạng toán 2. Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng toán 3. Bài toán thực tế về khối nón, khối trụ. §2. Mặt cầu Dạng toán 1. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Dạng toán 2. Khối cầu ngoại tiếp khối đa diện. Dạng toán 3. Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Chương 3 . Phương pháp tọa độ trong không gian §1. Hệ tọa độ trong không gian Dạng toán 1. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng toán 2. Tích vô hướng và ứng dụng. Dạng toán 3. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng toán 4. Các bài toán cực trị. §2. Phương trình mặt phẳng Dạng toán 1. Tích có hướng và ứng dụng. Dạng toán 2. Xác định VTPT. Dạng toán 3. Viết phương trình mặt phẳng. Dạng toán 4. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. §3. Phương trình đường thẳng trong không gian Dạng toán 1. Xác định VTCP. Dạng toán 2. Viết phương trình đường thẳng. Dạng toán 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng toán 4. Góc. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng toán 7. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu.

Nguồn: toanmath.com

Đọc Sách

Phát triển đề minh họa THPT Quốc gia 2020 môn Toán - Lê Văn Đoàn
Nhằm giúp các em học sinh khối 12 tiếp cận với các bài toán tương tự trong đề minh họa THPT Quốc gia 2020 môn Toán do Bộ Giáo dục và Đào tạo công bố (03/04/2020), giới thiệu đến các em tài liệu phát triển đề minh họa THPT Quốc gia 2020 môn Toán; tài liệu gồm có 80 trang được biên soạn bởi thầy Lê Văn Đoàn, phân tích và giải chi tiết các câu hỏi và bài toán trong đề thi, dưới mỗi câu, tác giả bổ sung thêm 8 câu hỏi và bài toán tương tự (có đáp án) giúp học sinh rèn luyện. Trích dẫn tài liệu phát triển đề minh họa THPT Quốc gia 2020 môn Toán – Lê Văn Đoàn: + Cho hai đường thằng song song. Trên đường thứ nhất có 10 điểm, trên đường thứ hai có 15 điểm, có bao nhiêu tam giác được tạo thành từ các điểm đã cho. + Cho hàm số y = f(x) có đạo hàm liên tục trên R và bảng biến thiên bên dưới. Xét hàm số g(x) = e^(3f(2 – x) + 1) + 3^f(2 – x). Số điểm cực đại của đồ thị hàm số y = g(|x|) là? [ads] + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình f(sinx) = sinx + m có nghiệm thuộc khoảng (0;pi). Tổng các phần tử của S bằng? + Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất cặp (x;y) thỏa mãn đồng thời các điều kiện log(x^2 + y^2 + 2) (4x + 4y – 4) và x^2 + y^2 + 2x – 2y + 2 – m = 0. Tổng các phần tử của S bằng? + Cho tập hợp A = {1; 2; 3; 4; 5}. Gọi S là tập hợp các số tự nhiên có 5 chữ số trong đó chữ số 3 có mặt đúng ba lần, các chữ số còn lại có mặt không quá một lần. Chọn ngẫu nhiên một số từ S, xác suất để số được chọn chia hết cho 3 bằng?
Toàn cảnh đề thi THPT Quốc gia môn Toán năm 2017 - 2018 - 2019
Trong quá trình ôn tập để chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020, việc xem lại đề thi chính thức THPT Quốc gia môn Toán của các năm học trước là rất cần thiết, bởi qua đó các em có thể nắm vững được hình thức, cấu trúc và độ khó của đề thi, biết được các dạng bài trọng tâm, từ đó có thể đưa ra những nhận định, để có phương pháp ôn tập phù hợp. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu toàn cảnh đề thi THPT Quốc gia môn Toán năm 2017 – 2018 – 2019, tài liệu gồm có 243 trang, được sưu tầm và biên soạn bởi thầy giáo Th.s Nguyễn Chín Em, phân dạng các câu hỏi và bài tập trong các đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo (bao gồm: đề chính thức, đề tham khảo, đề minh họa …) thành các chuyên đề, có đáp án và lời giải chi tiết, rất thuận tiện để tham khảo. [ads] Các chuyên đề trong tài liệu toàn cảnh đề thi THPT Quốc gia môn Toán năm 2017 – 2018 – 2019: 1. Giải tích 12 – Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. 2. Giải tích 12 – Chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. 3. Giải tích 12 – Chương 3: Nguyên hàm – Tích phân và ứng dụng. 4. Giải tích 12 – Chương 4: Số phức. 5. Hình học 12 – Chương 1: Khối đa diện và thể tích của chúng. 6. Hình học 12 – Chương 2: Mặt nón, mặt trụ, mặt cầu. 7. Hình học 12 – Chương 3: Phương pháp tọa độ trong không gian Oxyz. 8. Đại số và Giải tích 11 – Chương 1: Hàm số lượng giác. 9. Đại số và Giải tích 11 – Chương 2: Tổ hợp và xác suất. 10. Đại số và Giải tích 11 – Chương 4: Giới hạn. 11. Đại số và Giải tích 11 – Chương 5: Đạo hàm. 12. Hình học 11 – Chương 3: Vectơ trong không gian. Quan hệ vuông góc trong không gian.
650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán
Nhằm giúp quý thầy, cô giáo cùng các em học sinh khối 12 có thêm tài liệu chất lượng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu tài liệu 650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán. Tài liệu gồm 360 trang được biên soạn bởi thầy Tiêu Phước Thừa tuyển chọn 650 câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết, từ các đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong các năm 2017, 2018, 2019. Khái quát nội dung tài liệu tuyển tập các câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán: 1. Bài toán chỉ sử dụng P hoặc C hoặc A. 2. Bài toán kết hợp P, C và A. 3. Nhị thức newton. 4. Tính xác suất bằng định nghĩa. 5. Tính xác suất bằng công thức cộng. 6. Tính xác suất bằng công thức nhân. 7. Tính xác suất kết hợp công thức nhân và cộng. 8. Nhận diện cấp số cộng. 9. Tìm hạng tử cấp số cộng. 10. Giới hạn dãy số. 11. Giới hạn hàm số. 12. Bài toán tiếp tuyến. 13. Bài toán quãng đường vận tốc gia tốc. 14. Xét tính đơn điệu dựa vào công thức. 15. Xét tính đơn điệu dựa vào công thức. 16. Tìm điều kiện để hàm số đơn điệu. 17. Ứng dụng tính đơn điệu vào giải phương trình, hệ phương trình, bất phương trình. 18. Cực trị hàm số cho bởi công thức. 19. Tìm cực trị dựa vào bbt, đồ thị. 20. Tìm m để hàm số đạt cực trị tại một điểm x0 cho trước. 21. Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện. 22. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. 23. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. 24. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên đoạn. 25. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên khoảng. 26. Ứng dụng Giá trị lớn nhất, Giá trị nhỏ nhất, toán thực tế. 27. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết bảng biến thiên, đồ thị. 28. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. 29. Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận. 30. Câu hỏi lý thuyết về tiệm cận. 33. Biện luận nghiệm phương trình. 34. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). 35. Điểm đặc biệt của đồ thị hàm số. 36. Lũy thừa. 37. Tập xác định hàm số lũy thừa. 38. Tính giá trị biểu thức chứa lô-ga-rít. 39. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. 40. So sánh các biểu thức lô-ga-rít. 41. Tập xác định của hàm số mũ hàm số logarit. 42. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. 43. Khảo sát sự biến thiên và đồ thị của hàm số mũ, lô-ga-rít. 44. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. 45. Bài toán thực tế về hàm số mũ, logarit. 46. Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít. 47. Phương trình cơ bản. 48. Đưa về cùng cơ số. 49. Đặt ẩn phụ. 50. Dùng phương pháp hàm số đánh giá. [ads] 51. Toán thực tế. 52. Bất phương trình cơ bản. 53. Đưa về cùng cơ số. 54. Đặt ẩn phụ. 55. Toán thực tế. 56. Sử dụng định nghĩa – tính chất cơ bản. 57. Dùng phương pháp nguyên hàm từng phần. 58. Tích phân cơ bản. 59. Phương pháp đổi biến. 60. Phương pháp từng phần. 61. Hàm đặc biệt hàm ẩn. 62. Diện tích hình phẳng được giới hạn bởi các đồ thị. 63. Bài toán thực tế sử dụng diện tích hình phẳng. 64. Thể tích giới hạn bởi các đồ thị (tròn xoay). 65. Thể tích tính theo mặt cắt S(x). 66. Toán thực tế. 67. Xác định các yếu tố cơ bản của số phức. 68. Biểu diễn hình học cơ bản của số phức. 69. Thực hiện phép tính cộng, trừ, nhân số phức. 70. Xác định các yếu tố cơ bản của số phức qua các phép toán. 71. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. 72. Bài toán tập hợp điểm số phức. 73. Phép chia số phức. 74. Phương trình bậc hai với hệ số thực. 75. Phương trình quy về bậc hai. 76. Phương pháp hình học. 77. Phương pháp đại số. 78. Xác định góc giữa hai đường thẳng (dùng định nghĩa). 79. Xác định góc giữa mặt phẳng và đường thẳng. 80. Xác định góc giữa hai mặt phẳng. 81. Góc giữa 2 véctơ, 2 đường thẳng trong hình lăng trụ, hình lập phương. 82. Khoảng cách điểm đến đường mặt. 83. Khoảng cách giữa hai đường chéo nhau. 84. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. 85. Phân chia, lắp ghép các khối đa diện. 86. Phép biến hình trong không gian. 87. Diện tích xung quanh diện tích toàn phần. 88. Tính thể tích các khối đa diện. 89. Tỉ số thể tích. 90. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. 91. Toán thực tế. 92. Cực trị. 93. Thể tích khối nón, khối trụ. 94. Diện tích xung quanh, toàn phần, độ dài đường sinh, chiều cao, bán kính. 95. Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện. 96. Bài toán thực tế về khối nón, khối trụ. 97. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. 98. Khối cầu ngoại tiếp khối đa diện. 99. Toán tổng hợp về mặt cầu. 100. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. 101. Tích vô hướng và ứng dụng. 102. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối, hai mặt cầu, điểm đến mặt cầu, đơn giản). 103. Các bài toán cực trị. 104. Tích có hướng và ứng dụng. 105. Xác định vectơ pháp tuyến. 106. Viết phương trình mặt phẳng. 107. Tìm tọa độ điểm liên quan đến mặt phẳng. 108. Các bài toán khoảng cách. 109. Các bài toán xét vị trí tương đối. 110. Các bài toán cực trị. 111. Xác định vec-tơ chỉ phương. 112. Viết phương trình đường thẳng. 113. Tìm tọa độ điểm liên quan đường thẳng. 114. Khoảng cách. 115. Vị trí tương đối. 116. Tổng hợp mặt phẳng đường thẳng mặt cầu. 117. Các bài toán cực trị. 118. Ứng dụng phương pháp tọa độ.
Tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán
Chỉ còn một tháng nữa, kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức sẽ chính thức được diễn ra, đây là quãng thời gian các em học sinh cần tập trung ôn tập nhằm củng cố và nâng cao kiến thức Toán, kỹ năng giải toán trắc nghiệm, thử sức với nhiều dạng toán khác nhau, nhất là các dạng toán vận dụng cao, nhằm chinh phục mức điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia 2019 môn Toán sắp tới. Đồng hành cùng các em trong kỳ thi sắp tới, chia sẻ đến các em tài liệu tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán. Tài liệu gồm 238 trang được tổng hợp bởi thầy Nguyễn Bảo Vương, tuyển chọn các bài toán hay và khó, với đầy đủ các chủ đề theo cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, các bài toán được trích dẫn từ các đề thi thử môn Toán của các trường THPT và sở GD&ĐT trên cả nước, 100% bài toán có đáp án và lời giải chi tiết. [ads] Khái quát nội dung tài liệu tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán: + Chuyên đề 1. Hàm số và các vấn đề liên quan (trang 1 – trang 86). + Chuyên đề 2. Hàm số mũ – logarit (trang 87 – trang 111). + Chuyên đề 3. Nguyên hàm – tích phân và ứng dụng (trang 112 – trang 131). + Chuyên đề 4. Số phức (trang 132 – trang 150). + Chuyên đề 5. Khối đa diện và thể tích khối đa diện (trang 151 – trang 180). + Chuyên đề 6. Khối tròn xoay (trang 181 – trang 187). + Chuyên đề 7. Phương pháp tọa độ trong không gian Oxyz (trang 188 – trang 217). + Chuyên đề 8. Một số bài toán khó lớp 11 (trang 218 – trang 238).