Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán

Tài liệu gồm 71 trang phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán theo các đơn vị kiến thức tương ứng với các nội dung bài học. Tài liệu được biên soạn theo hình thức LaTex, các câu hỏi và bài tập trong tài liệu đều được phân tích và giải chi tiết. Tài liệu thích hợp cho các em học sinh khối 12 dùng để rèn luyện chuẩn bị cho kỳ thi THPT Quốc gia năm 2019 môn Toán. Nội dung tài liệu phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán : ĐẠI SỐ & GIẢI TÍCH 11 Chương 2 . Tổ hợp. Xác suất. Nhị thức Newton §1. Hoán vị-chỉnh hợp-tổ hợp Dạng toán. Bài toán chỉ sử dụng P hoặc C hoặc A. §2. Nhị thức Newton Dạng toán. Tìm hệ số, số hạng trong khai triển nhị thức Newton. §3. Xác suất của biến cố Dạng toán 1. Tính xác suất bằng định nghĩa. Dạng toán 2. Tính xác suất bằng công thức nhân. Chương 3 . Dãy số – Cấp số cộng- Cấp số nhân §1. Dãy số Dạng toán. Tìm hạng tử trong dãy số. Chương 4 . Giới hạn §1. Giới hạn của dãy số Dạng toán. Dùng phương pháp đặt thừa số. §2. Giới hạn của hàm số Dạng toán. Dạng vô cùng chia vô cùng, số chia vô cùng. HÌNH HỌC 11 Chương 3 . Véc-tơ trong không gian. Quan hệ vuông góc trong không gian §1. Hai đường thẳng vuông góc Dạng toán. Xác định góc giữa hai đường thẳng (dùng định nghĩa). §2. Đường thẳng vuông góc với mặt phẳng Dạng toán 1. Xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng, đường thẳng và đường thẳng. Dạng toán 2. Xác định góc giữa hai mặt phẳng, đường thẳng và mặt phẳng. §3. Hai mặt phẳng vuông góc Dạng toán. Xác định góc giữa hai mặt phẳng, đường và mặt. §4. Khoảng cách Dạng toán 1. Tính độ dài đoạn thẳng và khoảng cách từ một điểm đến một đường thẳng. Dạng toán 2. Khoảng cách từ một điểm đến một mặt phẳng. Dạng toán 3. Khoảng cách giữa hai đường thẳng chéo nhau. GIẢI TÍCH 12 Chương 1 . Ứng dụng đạo hàm để khảo sát hàm số §1. Sự đồng biến và nghịch biến của hàm số Dạng toán 1. Xét tính đơn điệu của hàm số cho bởi công thức. Dạng toán 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm tham số m để hàm số đơn điệu. Dạng toán 4. Ứng dụng tính đơn điệu để chứng minh bất đẳng thức, giải phương trình, bất phương trình, hệ phương trình. §2. Cực trị của hàm số Dạng toán 1. Tìm cực trị của hàm số cho bởi công thức. Dạng toán 2. Tìm cực trị dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. Dạng toán 4. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. Dạng toán 5. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. §3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Dạng toán 1. GTLN, GTNN trên đoạn [a;b]. Dạng toán 2. GTLN, GTNN trên khoảng. Dạng toán 3. Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình. Dạng toán 4. Bài toán ứng dụng, tối ưu, thực tế. §4. Đường tiệm cận Dạng toán 1. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng toán 2. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. §5. Khảo sát sự biến thiên và vẽ đồ thị hàm số Dạng toán 1. Nhận dạng đồ thị, bảng biến thiên. Dạng toán 2. Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng toán 3. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng toán 4. Phương trình tiếp tuyến của đồ thị hàm số. Chương 2 . Hàm số lũy thừa – Hàm số mũ và Hàm số lô-ga-rít §1. Lũy thừa Dạng toán 1. Tính giá trị của biểu thức chứa lũy thừa. Dạng toán 2. Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa. §2. Hàm số lũy thừa Dạng toán 1. Tập xác định của hàm số chứa hàm lũy thừa. Dạng toán 2. Đạo hàm hàm số lũy thừa. §3. Lô-ga-rít Dạng toán 1. Tính giá trị biểu thức chứa lô-ga-rít. Dạng toán 2. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng toán 3. So sánh các biểu thức lô-ga-rít. §4. Hàm số mũ. Hàm số lô-ga-rít Dạng toán 1. Tập xác định của hàm số mũ, hàm số lô-ga-rít. Dạng toán 2. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng toán 3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số mũ, lô-ga-rít. Dạng toán 4. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. Dạng toán 5. Bài toán thực tế. §5. Phương trình mũ và phương trình lô-ga-rít Dạng toán 1. Phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. Dạng toán 4. Phương pháp hàm số, đánh giá. Dạng toán 5. Bài toán thực tế. §6. Bất phương trình mũ và lô-ga-rít Dạng toán 1. Bất phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. [ads] Chương 3 . Nguyên hàm, tích phân và ứng dụng §1. Nguyên hàm Dạng toán 1. Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp nguyên hàm từng phần. §2. Tích phân Dạng toán 1. Định nghĩa, tính chất và tích phân cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp tích phân từng phần. Dạng toán 4. Tích phân của hàm ẩn. Tích phân đặc biệt. §3. Ứng dụng của tích phân Dạng toán 1. Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng toán 2. Bài toán thực tế sử dụng diện tích hình phẳng. Dạng toán 3. Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng toán 4. Thể tích tính theo mặt cắt S(x). Dạng toán 5. Bài toán thực tế và ứng dụng thể tích. Dạng toán 6. Ứng dụng tích phân vào bài toán liên môn (lý, hóa, sinh, kinh tế). Chương 4 . Số phức §1. Khái niệm số phức Dạng toán 1. Xác định các yếu tố cơ bản của số phức. Dạng toán 2. Biểu diễn hình học cơ bản của số phức. Dạng toán 3. Câu hỏi lý thuyết. §2. Phép cộng, trừ và nhân số phức Dạng toán 1. Thực hiện phép tính. Dạng toán 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng toán 3. Bài toán tập hợp điểm. §3. Phép chia số phức Dạng toán 1. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. Dạng toán 2. Bài toán tập hợp điểm. §4. Phương trình bậc hai hệ số thực Dạng toán 1. Giải phương trình. Tính toán biểu thức nghiệm. Dạng toán 2. Phương trình quy về bậc hai. §5. Cực trị Dạng toán. Phương pháp hình học. HÌNH HỌC 12 Chương 1 . Khối đa diện §1. Khái niệm về khối đa diện Dạng toán 1. Nhận diện hình đa diện, khối đa diện. Dạng toán 2. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. Dạng toán 3. Phép biến hình trong không gian. §2. Khối đa diện lồi và khối đa diện đều Dạng toán. Nhận diện loại đa diện đều. §3. Khái niệm về thể tích của khối đa diện Dạng toán 1. Diện tích xung quanh, diện tích toàn phần của khối đa diện. Dạng toán 2. Tính thể tích các khối đa diện. Dạng toán 3. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. Chương 2 . Mặt nón, mặt trụ, mặt cầu §1. Khái niệm về mặt tròn xoay Dạng toán 1. Thể tích khối nón, khối trụ. Dạng toán 2. Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng toán 3. Bài toán thực tế về khối nón, khối trụ. §2. Mặt cầu Dạng toán 1. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Dạng toán 2. Khối cầu ngoại tiếp khối đa diện. Dạng toán 3. Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Chương 3 . Phương pháp tọa độ trong không gian §1. Hệ tọa độ trong không gian Dạng toán 1. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng toán 2. Tích vô hướng và ứng dụng. Dạng toán 3. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng toán 4. Các bài toán cực trị. §2. Phương trình mặt phẳng Dạng toán 1. Tích có hướng và ứng dụng. Dạng toán 2. Xác định VTPT. Dạng toán 3. Viết phương trình mặt phẳng. Dạng toán 4. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. §3. Phương trình đường thẳng trong không gian Dạng toán 1. Xác định VTCP. Dạng toán 2. Viết phương trình đường thẳng. Dạng toán 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng toán 4. Góc. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng toán 7. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu.

Nguồn: toanmath.com

Đọc Sách

Phương pháp hàm số đặc trưng - Nguyễn Văn Rin
Tài liệu gồm 43 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Văn Rin, trình bày cơ sở lý thuyết và giới thiệu một số ví dụ áp dụng của phương pháp hàm số đặc trưng trong các đề thi thử THPT Quốc Gia môn Toán cũng như đề chính thức của Bộ Giáo dục và Đào tạo qua các năm. Phương pháp hàm số đặc trưng thường xuyên xuất hiện trong đề thi THPT Quốc Gia môn Toán và nó cũng là một trong những câu phân loại học sinh khá – giỏi của đề thi, ví dụ như: Câu 47 mã đề 101 – THPT QG năm 2017; Câu 35 đề tham khảo – BGD&ĐT năm 2018; Câu 46 mã đề 101 – THPT QG năm 2018; Câu 47 đề tham khảo – BGD&ĐT năm 2020. Khái quát nội dung tài liệu phương pháp hàm số đặc trưng – Nguyễn Văn Rin: I. Cơ sở lý thuyết : Cho hàm số y = f(x) liên tục trên tập D. + Nếu hàm số f(x) đơn điệu (đồng biến hoặc nghịch biến) trên D thì với mọi u, v thuộc D ta có: f(u) = f(v) khi và chỉ khi u = v. + Nếu hàm số f(x) đồng biến trên D thì với mọi u, v thuộc D ta có: f(u) < f(v) khi và chỉ khi u < v. + Nếu hàm số f(x) nghịch biến trên D thì với mọi u, v thuộc D ta có: f(u) < f(v) khi và chỉ khi u > v. [ads] II. Áp dụng + Dạng 1. Giải phương trình, bất phương trình mũ và logarit. + Dạng 2. Tìm điều kiện để phương trình, bất phương trình có nghiệm. + Dạng 3. Tìm GTLN và GTNN của hàm số. + Dạng 4. Tìm nghiệm nguyên của phương trình. + Dạng 5. Tính tích phân.
Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT
Tài liệu các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT gồm có 283 trang hướng dẫn phương pháp giải nhanh một số dạng bài tập trắc nghiệm môn Toán thường gặp trong đề thi THPT Quốc gia môn Toán, rất hữu ích dành cho học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT QG. Các bài toán trong tài liệu được tác giả phân tích tỉ mỉ, đưa ra lời giải tự luận trước rồi mới giới thiệu một số “mẹo” giúp tìm nhanh đáp án, thông qua sự trợ giúp của máy tính cầm tay Casio / Vinacal … và một số công thức giải nhanh được thiết lập từ các bài toán tổng quát hóa. Khái quát nội dung tài liệu các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT: Phần I . Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm quan hệ giữa tính đơn điệu và đạo hàm của hàm số. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm cực trị của hàm số. + Chủ đề 3. Các phương pháp giải bài tập trắc nghiệm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Chủ đề 4. Các phương pháp giải bài tập trắc nghiệm đường tiệm cận của đồ thị. + Chủ đề 5. Các phương pháp giải bài tập trắc nghiệm điểm uốn của đồ thị – phép tịnh tiến hệ tọa độ. + Chủ đề 6. Các phương pháp giải bài tập trắc nghiệm sự tương giao của hai đồ thị. + Chủ đề 7. Các phương pháp giải bài tập trắc nghiệm sự tiếp xúc của hai đồ thị. + Chủ đề 8. Các phương pháp giải bài tập trắc nghiệm tiếp tuyến của đồ thị. Phần II . Hàm số lũy thừa, hàm số mũ và hàm số logarit. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm hàm số mũ và hàm số logarit. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm phương trình mũ và phương trình logarit. [ads] Phần III . Nguyên hàm, tích phân và ứng dụng. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm nguyên hàm. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm tích phân. Phần IV . Số phức. + Chủ đề 1. Số phức và các phép toán. + Chủ đề 2. Căn bậc hai của số phức – phương trình bậc hai + Chủ đề 3. Dạng lượng giác của số phức và ứng dụng. Phần V . Phương pháp tọa độ trong không gian + Chủ đề 1. Hệ tọa độ trong không gian. + Chủ đề 2. Phương trình mặt phẳng. + Chủ đề 3. Phương trình đường thẳng.
Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán Lư Sĩ Pháp (Tập 2)
giới thiệu đến các em tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán (Tập 2) do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 136 trang tổng hợp các dạng toán và bài tập các chuyên đề thuộc chương trình Hình học 12. + Chuyên đề 5 . Khối đa diện – Thể tích khối đa diện (Trang 01 – 35). + Chuyên đề 6 . Mặt nón – Mặt trụ – Mặt cầu (Trang 36 – 68). + Chuyên đề 7 . Phương pháp tọa độ trong không gian Oxyz (Trang 69 – 132). [ads] Ở mỗi chuyên đề, nội dung tài liệu được chia thành 2 phần: + Phần 1 . Phần lý thuyết: Ở phần này thầy Lư Sĩ Pháp trình bày đầy đủ lý thuyết cần nắm cho mỗi chuyên đề và các dạng toán cần nắm. + Phần 2 . Phần trắc nghiệm: Bài tập trắc nghiệm có đáp án theo các chuyên đề, đa dạng, phong phú và bám sát cấu trúc đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Nội dung của cuốn tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán – Lư Sĩ Pháp (Tập 2) bám sát chương trình chuẩn và chương trình nâng cao môn Hình học 12 đã được Bộ Giáo dục và Đào tạo quy định. Xem thêm : Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán – Lư Sĩ Pháp (Tập 1)
Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán - Lư Sĩ Pháp (Tập 1)
giới thiệu đến các em tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán (Tập 1) do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 158 trang tổng hợp các dạng toán và bài tập các chuyên đề thuộc chương trình Giải tích 12. Chuyên đề 1 . Ứng dụng của đạo hàm – Khảo sát và vẽ đồ thị hàm số – Bài toán liên quan (Trang 01 – 39) + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho. + Dạng 2. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó. + Dạng 3. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (a;b). + Dạng 4. Tìm các điểm cực trị của hàm số y = f(x). + Dạng 5. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0. + Dạng 6. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán. + Dạng 7. Tìm GTLN – GTNN của hàm số trên đoạn [a;b]. Xét hàm số y = f(x). + Dạng 8. Tìm GTLN – GTNN của hàm số chứa căn thức. + Dạng 9. Tìm GTLN – GTNN của hàm số trên một khoảng (a;b). + Dạng 10. Ứng dụng vào bài toán thực tế. + Dạng 11. Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên. + Dạng 12. Tìm các đường tiệm cận của hàm số nhất biến. + Dạng 13. Tìm các đường tiệm đứng của hàm số khác. + Dạng 14. Khảo sát sự biến thiên và vẽ đồ thị hàm số. + Dạng 15. Biện luận số giao điểm của hai đồ thị. + Dạng 16. Biện luận số nghiệm của phương trình bằng đồ thị. + Dạng 17. Viết phương trình tiếp tuyến. + Dạng 18. Sự tiếp xúc của các đường cong. [ads] Chuyên đề 2 . Lũy thừa – Mũ – Lôgarit. Phương trình, bất phương trình Mũ – Lôgarit và các bài toán ứng dụng thực tế (Trang 40 – 77) + Dạng 1. Xét tính đúng sai của một mệnh đề. + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit. + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước. + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit. + Dạng 5. Tập xác định của hàm số. + Dạng 6. Tính đạo hàm. + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình. + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế. Chuyên đề 3 . Nguyên hàm – Tích phân – Ứng dụng của tích phân trong hình học (Trang 78 – 124) + Dạng 1. Nguyên hàm và các phương pháp tìm nguyên hàm. + Dạng 2. Tích phân và các phương pháp tính tích phân. + Dạng 3. Ứng dụng của tích phân trong hình học. Chuyên đề 4 . Số phức (Trang 125 – 154) + Dạng 1. Số phức và các phép toán trên số phức. + Dạng 2. Phương trình bậc hai. + Dạng 3. Cực trị số phức. + Dạng 4. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z|. Ở mỗi chuyên đề, nội dung tài liệu được chia thành 2 phần: + Phần 1 . Phần lý thuyết: Ở phần này thầy Lư Sĩ Pháp trình bày đầy đủ lý thuyết cần nắm cho mỗi chuyên đề và các dạng toán cần nắm. + Phần 2 . Phần trắc nghiệm: Bài tập trắc nghiệm có đáp án theo các chuyên đề, đa dạng, phong phú và bám sát cấu trúc đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Nội dung của cuốn tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán – Lư Sĩ Pháp (Tập 1) bám sát chương trình chuẩn và chương trình nâng cao môn Giải tích 12 đã được Bộ Giáo dục và Đào tạo quy định.