Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét

Bài toán giải và biện luận nghiệm phương trình bậc hai cùng với ứng dụng của hệ thức Vi-ét là một trong những nội dung quan trọng bậc nhất trong chương trình Đại số lớp 9, đây là dạng toán xuất hiện trong hầu hết các đề thi tuyển sinh vào lớp 10 môn Toán. Nhằm giúp các em tìm hiểu và ôn tập dạng toán này, THCS. giới thiệu đến các em tài liệu chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét; tài liệu gồm có 101 trang do tác giả Trịnh Bình sưu tầm và tổng hợp. Khái quát nội dung tài liệu chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét: Chủ đề 1 . Phương trình bậc hai một ẩn. 1. Kiến thức cần nhớ. 2. Bài tập vận dụng. + Dạng toán 1. Giải phương trình bậc hai một ẩn. + Dạng toán 2. Tìm điều kiện để phương trình bậc hai có nghiệm. + Dạng toán 3. Nghiệm nguyên, nghiệm hữu tỷ của phương trình bậc hai. + Dạng toán 4. Tìm giá trị của m để phương trình có hai nghiệm chung. + Dạng toán 5. Chứng minh trong một hệ các phương trình bậc hai có một phương trình có nghiệm. + Dạng toán 6. Ứng dụng của phương trình bậc hai trong chứng minh bất đẳng thức và tìm GTNN và GTLN. [ads] Chủ đề 2 . Khai thác các ứng dụng của định lý Vi-ét. A. Kiến thức cần nhớ. B. Các ứng dụng của định lý Vi-ét. + Dạng toán 1: Giải phương trình bậc hai bằng cách tính nhẩm nghiệm. + Dạng toán 2: Tính giá trị biểu thức giữa các nghiệm của phương trình. + Dạng toán 3. Tìm hia số khi biết tổng và tích. + Dạng toán 4. Phân tích tam thức tam thức bậc hai thành nhân tử. + Dạng toán 5. Tìm tham số để phương trình bậc hai có một nghiệm x = x1. Tìm nghiệm thứ hai. + Dạng toán 6. Xác định tham số để phương trình có nghiệm thỏa mãn một hệ điều kiện cho trước. + Dạng toán 7. Lập phương trình bậc hai khi biết hai nghiệm của nó hoặc hai nghiệm của nó liên quan đến hai nghiệm của một phương trình đã cho. + Dạng toán 8. Tìm hệ thức liên hệ giữa hai nghiệm của phương trình bậc hai, không phụ thuộc vào tham số. + Dạng toán 9. Chứng minh hệ thức liên hệ giữa các nghiệm của phương trình bậc hai, hoặc hai nghiệm của phương trình bậc hai. + Dạng toán 10. Xét dấu các nghiệm của phương trình bậc hai, so sách các nghiệm của phương trình bậc hai với một số cho trước. + Dạng toán 11. Nghiệm chung của hai hay nhiều phương trình, hai phương trình tương đương. + Dạng toán 12. Ứng dụng của hệ thức Vi-ét các bài toán số học. + Dạng toán 13. Ứng dụng của hệ thức Vi-ét giải phương trình, hệ phương trình. + Dạng toán 14. Ứng dụng hệ thức vi-ét chứng minh đẳng thức, bất đẳng thức, tìm GTLN và GTNN. + Dạng toán 15. Vận dụng định lý Vi-ét vào các bài toán hàm số. + Dạng toán 16. Ứng dụng địng lý Vi-ét trong các bài toán hình học. Bài tập rèn luyện tổng hợp. Hướng dẫn giải. Bài tập không lời giải.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và phân dạng môn Toán 9 - Nguyễn Ngọc Dũng
Tài liệu gồm 88 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tổng hợp lý thuyết và phân dạng môn Toán 9. MỤC LỤC : I Đại số 1. Chương 1. Căn bậc hai. Căn bậc ba 2. Bài số 1. Căn bậc hai 2. Bài số 2. Liên hệ giữa phép nhân, phép chia và phép khai phương 5. Bài số 3. Biến đổi, rút gọn biểu thức chứa căn bậc hai 5. Bài số 4. Căn bậc ba 8. Bài số 5. Ôn tập chương 1 9. Chương 2. Hàm số. Hàm số bậc nhất 15. Bài số 1. Hàm số, hàm số bậc nhất 15. Bài số 2. Đường thẳng song song – Đường thẳng cắt nhau 16. Bài số 3. Hệ số góc của đường thẳng y = ax + b (a khác 0) 18. Bài số 4. Các bài tập tổng hợp 20. Bài số 5. Các bài toán thực tế ứng dụng hàm số 21. Chương 3. Hệ phương trình bậc nhất hai ẩn 24. Bài số 1. Phương trình và hệ phương trình bậc nhất hai ẩn 24. Bài số 2. Giải hệ phương trình bậc nhất hai ẩn 25. Bài số 3. Giải bài toán bằng cách lập hệ phương trình 28. Chương 4. Hàm số y = ax2 (a khác 0). Phương trình bậc hai 29. Bài số 1. Hàm số y = ax2 (a khác 0) 29. Bài số 2. Phương trình bậc hai một ẩn 34. Bài số 3. Hệ thức Vi-ét và ứng dụng 40. Bài số 4. Phương trình quy về phương trình bậc hai 45. Bài số 5. Giải bài toán bằng cách lập phương trình 48. II Hình học 52. Chương 1. Hệ thức lượng trong tam giác vuông 53. Bài số 1. Hệ thức lượng trong tam giác vuông 53. Bài số 2. Tỉ số lượng giác trong tam giác vuông 54. Bài số 3. Ứng dụng thực tế 56. Chương 2. Đường tròn 61. Bài số 1. Sự xác định đường tròn 61. Bài số 2. Đường kính và dây của đường tròn 61. Bài số 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây 61. Bài số 4. Vị trí tương đối giữa đường thẳng và đường tròn. Dấu hiệu nhận biết tiếp tuyến 62. Chương 3. Góc với đường tròn 65. Bài số 1. Góc ở tâm – Góc nội tiếp – Góc tạo bởi tiếp tuyến và dây cung 65. Bài số 2. Góc có đỉnh bên trong – bên ngoài đường tròn 67. Bài số 3. Tứ giác nội tiếp 68. Bài số 4. Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt 72. Chương 4. Hình trụ – Hình nón – Hình cầu 77. Bài số 1. Diện tích xung quanh và thể tích của hình trụ 77. Bài số 2. Diện tích xung quanh và thể tích của hình nón và hình nón cụt 80. Bài số 3. Diện tích và thể tích của hình cầu 83.
Vận dụng định lí Viète giải các dạng toán liên quan đến phương trình bậc hai
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Phạm Văn Tuyên, hướng dẫn vận dụng định lí Viète (Vi-ét) vào việc giải các dạng toán thường gặp có liên quan đến phương trình bậc hai. I. KIẾN THỨC CẦN NHỚ. 1. Định lí Viète. Nếu phương trình ax2 + bx + c = 0 (a khác 0) có hai nghiệm x1, x2 thì x1 + x2 = −b/a, x1x2 = c/a. Ngược lại, nếu hai số u, v có tổng u + v = S và tích uv = P có S2 >= 4P thì u và v là các nghiệm của phương trình X2 − SX + P = 0. 2. Ý nghĩa của định lí Viète. + Cho phép nhẩm nghiệm trong những trường hợp đơn giản. + Cho phép tính giá trị của biểu thức đối xứng của các nghiệm và xét dấu của các nghiệm không cần giải phương trình. II. MỘT SỐ DẠNG TOÁN LIÊN QUAN. Dạng 1. Vận dụng định lí Viète vào một số bài toán tính giá trị của biểu thức. Dạng 2. Vận dụng định lí Viète vào bài toán tìm tham số để các nghiệm của phương trình đã cho thỏa mãn một hệ thức. Dạng 3. Vận dụng định lí Viète vào bài toán chứng minh bất đẳng thức, tìm GTLN và GTNN. Dạng 4. Vận dụng định lí Viète vào một số bài toán số học. Dạng 5. Vận dụng định lí Viète vào một số bài toán liên quan hàm số y = ax2 (a khác 0). Dạng 6. Vận dụng định lí Viète vào bài toán giải hệ phương trình hai ẩn. III. BÀI TẬP TỰ LUYỆN.
487 bài toán hệ phương trình bậc nhất và phương trình bậc hai
Tài liệu gồm 165 trang, được biên soạn bởi nhóm tác giả LaTeX Theme and Related Topics, tuyển chọn 487 bài toán hệ phương trình bậc nhất và phương trình bậc hai trong chương trình Toán 9 phần Đại số, có đáp số và lời giải chi tiết. Mục lục : 1 Hệ phương trình bậc nhất – Trang 1. 2 Phương trình bậc hai – Trang 39. 3 Mở rộng – Trang 90.
Ôn luyện Toán 9 theo chủ đề (tập 2)
Tài liệu gồm 199 trang, bao gồm tóm tắt lý thuyết, bài tập và các dạng toán, giúp học sinh lớp 9 ôn luyện Toán 9 theo chủ đề (tập 2). Mục lục : CHỦ ĐỀ 1. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 1. + Vấn đề 1. Phương trình bậc nhất hai ẩn 1. + Vấn đề 2. Hệ hai phương trình bậc nhất hai ẩn 5. + Vấn đề 3. Giải hệ phương trình bằng phương pháp thế 9. + Vấn đề 4. Giải hệ phương trình bằng phương pháp cộng đại số 13. + Vấn đề 5. Hệ phương trình bậc nhất hai ẩn chứa tham số 17. + Vấn đề 6. Giải bài toán bằng cách lập hệ phương trình (phần 1) 20. + Vấn đề 7. Giải bài toán bằng cách lập hệ phương trình (phần 2) 23. Ôn tập chủ đề 1 (phần 1) 26. Ôn tập chủ đề 1 (phần 2) 29. CHỦ ĐỀ 2. HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 32. + Vấn đề 1. Hàm số y = ax2 (a khác 0) và đồ thị (phần 1) 32. + Vấn đề 2. Hàm số y = ax2 (a khác 0) và đồ thị (phần 2) 36. + Vấn đề 3. Công thức nghiệm 38. + Vấn đề 4. Công thức nghiệm 42. + Vấn đề 5. Hệ thức Vi-ét và ứng dụng (phần 1) 46. + Vấn đề 6. Hệ thức Vi-ét và ứng dụng (phần 2) 50. + Vấn đề 7. Phương trình quy về phương trình bậc hai 54. + Vấn đề 8. Giải bài toán bằng cách lập phương trình (phần 1) 58. + Vấn đề 9. Giải bài toán bằng cách lập phương trình (phần 2) 62. + Vấn đề 10. Bài toán về đường thẳng và parabol 66. Ôn tập chủ đề 2 69. CHỦ ĐỀ 3. GÓC VỚI ĐƯỜNG TRÒN 73. + Vấn đề 1. Góc ở tâm. Số đo cung 73. + Vấn đề 2. Liên hệ giữa cung và dây 75. + Vấn đề 3. Góc nội tiếp (phần 1) 77. + Vấn đề 4. Góc nội tiếp (phần 2) 78. + Vấn đề 5. Góc tạo bởi tia tiếp tuyến và dây (phần 1) 80. + Vấn đề 6. Góc tạo bởi tia tiếp tuyến và dây cung (phần 2) 81. + Vấn đề 7. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 1) 84. + Vấn đề 8. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 2) 85. + Vấn đề 9. Cung chứa góc 88. + Vấn đề 10. Tứ giác nội tiếp (phần 1) 90. + Vấn đề 11. Tứ giác nội tiếp (phần 2) 92. + Vấn đề 12. Độ dài đường tròn, cung tròn 94. + Vấn đề 13. Diện tích hình tròn, hình quạt tròn 98. Ôn tập theo chủ đề 3 101. CHỦ ĐỀ 4. HÌNH TRỤ, HÌNH NÓN, HÌNH CẦU 104. + Vấn đề 1. Diện tích xung quanh và thể tích của hình trụ 104. + Vấn đề 2. Diện tích xung quanh và thể tích hình nón, hình nón cụt 106. + Vấn đề 3. Diện tích và thể tích mặt cầu 108. Ôn tập chủ đề 4 111. HƯỚNG DẪN GỢI Ý ĐÁP ÁN 113. CHỦ ĐỀ 1. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 113. + Vấn đề 1. Phương trình bậc nhất hai ẩn 113. + Vấn đề 2. Hệ hai phương trình bậc nhất hai ẩn 116. + Vấn đề 3. Giải hệ phương trình bằng phương pháp thế 118. + Vấn đề 4. Giải hệ phương trình bằng phương pháp cộng đại số 120. + Vấn đề 5. Hệ phương trình bậc nhất 122. + Vấn đề 6. Giải bài toán bằng cách lập hệ phương trình (phần 1) 125. Ôn tập chủ đề 1 (phần 1) 128. Ôn tập chủ đề 1 (phần 2) 131. CHỦ ĐỀ 2. HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 133. + Vấn đề 2. Hàm số y = ax2 (a khác 0) và đồ thị (phần 2) 135. + Vấn đề 3. Công thức nghiệm của phương trình bậc hai (phần 1) 138. + Vấn đề 4. Công thức nghiệm của phương trình bậc hai (phần 2) 140. + Vấn đề 5. Hệ thức Vi-ét và ứng dụng (phần 1) 143. + Vấn đề 6. Hệ thức Vi-ét và ứng dụng (phần 2) 147. + Vấn đề 7. Phương trình quy về phương trình bậc hai 149. + Vấn đề 8. Giải bài toán bằng cách lập phương trình (phần 1) 151. + Vấn đề 9. Giải bài toán bằng cách lập phương trình (phần 2) 154. + Vấn đề 10. Bài toán về đường thẳng và parabol 156. Ôn tập chủ đề 2 158. CHỦ ĐỀ 3. GÓC VỚI ĐƯỜNG TRÒN 160. + Vấn đề 1. Góc ở tâm. Số đo cung 160. + Vấn đề 2. Liên hệ giữa cung và dây 161. + Vấn đề 3. Góc nội tiếp (phần 1) 163. + Vấn đề 4. Góc nội tiếp (phần 2) 165. + Vấn đề 5. Góc tạo bởi tia tiếp tuyến và dây (phần 1) 167. + Vấn đề 6. Góc tạo bởi tia tiếp tuyến và dây (phần 2) 168. + Vấn đề 7. Góc có đỉnh bên trong hay bên ngoài 170. + Vấn đề 8. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 2) 172. + Vấn đề 9. Cung chứa góc 174. + Vấn đề 10. Tứ giác nội tiếp (phần 1) 175. + Vấn đề 11. Tứ giác nội tiếp (phần 2) 177. + Vấn đề 12. Độ dài đường tròn, cung tròn 180. + Vấn đề 13. Diện tích hình tròn, hình quạt tròn 183. Ôn tập chủ đề 3 186. CHỦ ĐỀ 4. HÌNH TRỤ, HÌNH NÓN, HÌNH CÂU 191. + Vấn đề 1. Diện tích xung quanh và thể tích hình trụ 191. + Vấn đề 2. Diện tích xung quanh và thể tích của hình nón, hình nón cụt 193. + Vấn đề 3. Diện tích và thể tích của mặt cầu 194. Ôn tập chủ đề 4 196.