Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh

Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 9 bộ đề thi chọn học sinh giỏi cấp thành phố môn Toán năm học 2022 - 2023 của Sở Giáo dục và Đào tạo TP.Hồ Chí Minh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm; sẽ diễn ra vào thứ Ba ngày 14 tháng 03 năm 2023. Trích đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM: Cho phương trình \(x^3 + mx^2 - x + m - m^2 = 0\) với tham số m. Chứng minh rằng phương trình luôn có một nghiệm \(x = 1 - m\) với mọi giá trị của tham số m. Tìm tất cả các giá trị của tham số m để phương trình có ba nghiệm phân biệt \(x_1\), \(x_2\), \(x_3\) sao cho \(x_1^2 + x_2^2 + x_3^2 = 3\). Cho tam giác ABC không cân nội tiếp đường tròn (O) có đường cao AD; AM là đường kính của đường tròn (O); K là hình chiếu của B lên AM. Chứng minh rằng DK vuông góc AC. Chứng minh rằng AEFC là tứ giác nội tiếp. Chứng minh rằng HE = 2IO với H là trực tâm của tam giác AEC và I là tâm đường tròn ngoại tiếp tứ giác AEFC. Tìm tất cả các số tự nhiên x, y và số nguyên tố p sao cho \(p^x = y^4 + 64\). Đây là những câu hỏi thú vị và chất lượng trong đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM. Chúc các em học sinh ôn tập và thi đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Nghi Xuân - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghi Xuân, tỉnh Hà Tĩnh. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Nghi Xuân – Hà Tĩnh : + Viết số 2023^2023 thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu? + Tam giác ABC cân tại A, biết AB = 2cm và góc A bằng 36°. Tính BC. + Cho tam giác nhọn ABC (AB < AC). Ba đường cao AD, BE và CF cắt nhau tại H. Gọi I là giao điểm EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a. Chứng minh: AEF đồng dạng ABC. b.Chứng minh: IP = IQ. c. Gọi M là trung điểm của AH, chứng minh I là trực tâm của tam giác BMC.
Đề học sinh giỏi Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Ba Vì – Hà Nội : + Cho tam giác ABC cân tại A có ABC = 𝛼. Gọi I là trung điểm của BC. Trên cạnh AB, AC lấy M, N sao cho MIN = 𝛼. Chứng minh rằng: a) Tam giác BMI đồng dạng với tam giác CIN. Từ đó suy ra BM.CN không đổi. b) NI là tia phân giác của MNC. + Cho tam giác ABC vuông tại A, điểm M nằm giữa B và C. Gọi D, E thứ tự là hình chiếu của M trên AC, AB a) Tìm vị trí của M để DE có độ dài nhỏ nhất. b) Tam giác ABC có thêm điều kiện gì để với mọi vị trí của M nằm giữa B và C thì các hình chữ nhật ADME có chu vi bằng nhau. + Cho a, b là các số nguyên, chứng minh rằng: 42 24 Q a b a b ab ab chia hết cho 6.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Lộc Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi tỉnh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lộc Hà, tỉnh Hà Tĩnh; đề thi gồm 10 câu ghi kết quả và 03 câu tự luận; thời gian làm bài 120 phút. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Lộc Hà – Hà Tĩnh : + Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 26cm; BH = 2cm. Tính sin BAH. + Cho đường tròn (O;R). Hai dây AB và CD song song nhau. Biết AB = 16 cm, CD = 12 cm, khoảng cách giữa hai dây là 14 cm. Tính R. + Cho đường tròn (O;R) cố định và điểm M ở ngoài (O). Từ M vẽ các tiếp tuyến MA, MB và cát tuyến MCD (C nằm giữa M và D). Gọi I là trung điểm của CD, H là giao điểm của AB và OM, N là giao điểm của AB và CD. a) Chứng minh AM2 = MN.MI. b) Từ O vẽ đường thẳng song song với AB cắt MA, MB lần lượt tại P và Q. Xác định vị trí của M để diện tích tam giác MPQ có giá trị nhỏ nhất.
Đề HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Cửa hàng bác Tuấn ở thị trấn Xuân Hòa huyện Lập Thạch chuyên bán cá thính (đặc sản của huyện Lập Thạch, tỉnh Vĩnh Phúc). Cửa hàng có hai hình thức đóng thùng, loại I mỗi thùng gồm 10 hộp cá thính và loại II mỗi thùng gồm 5 hộp cá thính. Trong tháng 9 vừa qua cửa hàng bán buôn được 60 thùng cá thính (gồm cả loại I và loại II) thu về tổng cộng 55 triệu đồng. Biết rằng giá bán mỗi thùng cá thính loại I tính theo triệu đồng là một số nguyên dương và gấp đôi giá bán mỗi thùng cá thính loại II. Hỏi giá bán mỗi thùng cá thính loại I là bao nhiêu triệu đồng? + Lần lượt lấy trên các cạnh AB, BC, CA của tam giác ABC các điểm P, M, N. Gọi S, S1, S2, S3 lần lượt là diện tích các tam giác ABC, APN, BMP, CMN. Chứng minh rằng: S1.S2.S3. + Cho một đa giác đều có 2023 đỉnh. Người ta ghi lên mỗi đỉnh của đa giác số 1 hoặc số 2. Biết rằng có 1013 số 1 và 1010 số 2 và các số trên 3 đỉnh liên tiếp bất kỳ không đồng thời bằng nhau. Hãy tính S là tổng của tất cả các tích ba số trên 3 đỉnh liên tiếp của đã giác trên.