Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL bồi dưỡng lớp 10 môn Toán năm 2022 2023 trường Quảng Xương 4 Thanh Hóa

Nội dung Đề KSCL bồi dưỡng lớp 10 môn Toán năm 2022 2023 trường Quảng Xương 4 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng bồi dưỡng kiến thức môn Toán lớp 10 năm học 2022 – 2023 trường THPT Quảng Xương 4, tỉnh Thanh Hóa; đề thi mã đề 101 gồm 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL bồi dưỡng Toán lớp 10 năm 2022 – 2023 trường Quảng Xương 4 – Thanh Hóa : + Một công ty cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó loại xe A có 10 chiếc và loại xe B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu. Biết rằng mỗi xe loại A có thể chở tối đa 20 người và 0,6 tấn hàng; mỗi xe loại B có thể chở tối đa 10 người và 1,5 tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là ít nhất. A. 5 xe loại A và 4 xe loại B B. 10 xe loại A và 2 xe loại B C. 10 xe loại A và 9 xe loại B D. 4 xe loại A và 5 xe loại B. + Người ta thiết kế một bến phà như hình vẽ bên. Khi phà di chuyển từ bờ M sang bờ N với vận tốc 1 v 10 (m/s) theo hướng vuông góc với bờ, do nước chảy với vận tốc 2 v 6 (m/s) cùng phương với bờ nên phà sẽ đi theo hướng của vectơ v là vectơ tổng của hai vectơ v1 và v2 (tham khảo hình vẽ). Hãy tính vận tốc v của phà khi đi từ bờ M sang bờ N. + Độ lệch chuẩn của một dãy số liệu thống kê được tính là giá trị nào sau đây của dãy? A. Bình phương của phương sai. B. Một nửa của phương sai. C. Căn bậc hai của phương sai. D. Hai lần phương sai. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề ĐGCB học kỳ 1 Toán 10 năm 2020 - 2021 trường THPT chuyên KHTN - Hà Nội
Thứ Hai ngày 19 tháng 10 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi đánh giá công bằng học kỳ 1 môn Toán 10 năm học 2020 – 2021. Đề ĐGCB học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề ĐGCB học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội : + Xét đa giác đều 105 đỉnh, hỏi có bao nhiêu đa giác đều có đỉnh là đỉnh đa giác đã cho? + Xác định số cách chọn bộ 5 số từ tập 18 số nguyên dương đầu tiên sao cho 2 số bất kỳ trong 5 số được chọn có hiệu số giữa số lớn và số bé lớn hơn hoặc bằng 2. + Cho tập A = {0; 1; 2; 3; 4; 5}. Có bao nhiêu số gồm 5 chữ số của A mà mỗi số có đúng 3 chữ số giống nhau?
Đề kiểm tra kiến thức lớp chuyên Toán 10 năm 2020 - 2021 trường chuyên Lê Quý Đôn - BR VT
Đề kiểm tra kiến thức lớp chuyên Toán 10 năm học 2020 – 2021 trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề kiểm tra kiến thức lớp chuyên Toán 10 năm 2020 – 2021 trường chuyên Lê Quý Đôn – BR VT : + Cho đường tròn (O) và dây cung BC cố định không phải là đường kính. Gọi M là trung điểm của đoạn thẳng BC. Một điểm H thay đổi trên đoạn thẳng MB. Đường thẳng qua H, vuông góc với BC cắt đường tròn (O) tại hai điểm A, D sao cho HA > HD. Gọi E, F lần lượt là hình chiếu vuông góc của B,C trên hai cạnh CA, AB. Hai đường thẳng EF, BC cắt nhau tại điểm K. Đường thẳng AK cắt lại đường tròn (O) tại điểm L khác A. 1. Chứng minh rằng bốn điểm A, E, F, L cùng thuộc một đường tròn và ba đường thẳng BE, CF, LM đồng quy. 2. Gọi P là giao điểm của hai đường thẳng BE, FH và Q là giao điểm của hai đường thẳng CF, HE. Chứng minh ba điểm P, Q, K thẳng hàng. 3. Chứng minh rằng khi điểm H thay đổi trên đoạn thẳng MB thì đường thẳng LD luôn đi qua một điểm cố định. + Một nhóm gồm 9 người tham gia buổi offline, biết rằng cử ba người trong nhóm đó thì luôn có hai người không quen nhau. a) Gọi S là số cặp, mỗi cặp gồm hai người trong nhóm quen nhau. Chứng minh S < 20. b) Chứng minh trong nhóm có 4 người nào đó đôi một không quen biết nhau. + Trên bảng ta viết ba số thực không đồng thời bằng nhau. Mỗi lần giả sử trên bảng đang có ba số thực a, b, c ta xoá chúng đi và viết thay vào đó ba số khác là a – b; b – c; c – a. Chứng minh rằng nếu quá trình nói trên tiếp diễn nhiều lần, sẽ có lúc trên bảng thu được một số lớn hơn 2020.
Đề sát hạch Toán 10 lần 3 năm 2019 - 2020 trường THPT Đoàn Thượng - Hải Dương
Đề sát hạch Toán 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho tam giác có số đo ba cạnh là 3; 4; 5. Khẳng định nào đúng? A. Tam giác đều. B. Tam giác vuông. C. Tam giác cân. D. Tam giác tù. [ads] + Cho biểu thức f(x) = ax^2 + bx + c (a ≠ 0) và ∆ = b^2 – 4ac. Chọn khẳng định đúng? A. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ∈ R. B. Khi ∆ = 0 thì f(x) trái dấu với hệ số a với mọi x ≠ −b/2a. C. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ≠ −b/2a. D. Khi ∆ > 0 thì f(x) luôn trái dấu hệ số a với mọi x ∈ R. + Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình mx + m – (m + 2)x = m^2 – 2x có tập nghiệm là R. Tính tổng tất cả các phần tử của S.
Đề kiểm tra chất lượng Toán 10 lần 2 năm 2019 - 2020 trường THPT Lý Thái Tổ - Bắc Ninh
Thứ Bảy ngày 30 tháng 06 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh lớp 10 lần thứ hai năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 10 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra chất lượng Toán 10 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có điểm M nằm trên cạnh CD sao cho DC = 3DM và điểm N đối xứng với điểm C qua điểm B. Biết đỉnh B(-2;2), điểm A nằm trên đường thẳng delta: x + y – 3 = 0 và đường thẳng MN có phương trình là 3x – 4y + 4 = 0. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: x – y – 1 = 0 và d2: 7x – y – 13 = 0. a. Tính cosin của góc tạo bởi hai đường thẳng d1 và d2. b. Viết phương trình tham số của đường thẳng delta đi qua gốc tọa độ O và song song với d2. c. Viết phương trình đường tròn (C) có tâm I nằm trên đường thẳng d1, tiếp xúc với d2 và có bán kính R = 3√2. + Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hỏi có tất cả bao nhiêu giá trị nguyên dương của tham số m để bất phương trình f(-x^2 + 4x) > m có nghiệm thuộc khoảng [0;3]?