Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán 12 năm 2019 sở GD và ĐT Lạng Sơn

Đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán 12 năm 2019 sở GD và ĐT Lạng Sơn gồm 1 trang với 5 bài toán tự luận, thí sinh làm bài trong thời gian 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức ngày 24 tháng 08 năm 2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán 12 năm 2019 sở GD và ĐT Lạng Sơn : + Trên mặt phẳng cho 2n^2 (n ≥ 2) đường thẳng sao cho không có hai đường nào song song và không có ba đường nào đồng quy. Các đường thẳng này chia mặt phẳng ra thành các miền rời nhau. Trong các miền đó, gọi F là tập tất cả các miền đa giác có diện tích hữu hạn. Chứng minh rằng có thể tô n đường thẳng trong số 2n^2 đường thẳng đã cho bằng màu xanh sao cho không có miền nào trong tập F có tất cả các cạnh màu xanh. [ads] + Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Gọi M, N lần lượt là trung điểm các cung nhỏ BC, AD. Gọi I, J lần lượt là trung điểm của OM, ON. Gọi K là điểm đối xứng với O qua M. Chứng minh rằng tứ giác BJDK nội tiếp đường tròn. Gọi P, Q lần lượt là hình chiếu vuông góc của I lên AB, AC. Chứng minh rằng AK ⊥ PQ. + Cho đa thức P(x) có hệ số nguyên, bậc 2 và hệ số bậc 2 bằng 1 thỏa mãn tồn tại đa thức Q(x) có hệ số nguyên sao cho P(x).Q(x) là đa thức có tất cả các hệ số đều là ±1. Chứng minh rằng nếu đa thức P(x) có nghiệm thực x0 thì |x0| < 2. Tìm tất cả các đa thức P(x).

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển HSG Toán 12 năm 2021 - 2022 sở GDĐT Bà Rịa - Vũng Tàu
Đề chọn đội tuyển HSG Toán 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 24 tháng 11 năm 2021. Trích dẫn đề chọn đội tuyển HSG Toán 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn tâm O và có các đường cao AD, BE, CF cắt nhau tại H. Gọi O1 là điểm đối xứng của O qua đường thẳng BC. AO1 cắt BC tại L, DE cắt HC tại M, DF cắt HB tại N. a) Chứng minh đường tròn ngoại tiếp tam giác DMN và đường tròn đường kính AL tiếp xúc nhau. b) Tiếp tuyến tại D của đường tròn đường kính AL cắt EF tại K. Chứng minh KH = KD. + Cho các số nguyên dương a, b, c phân biệt. Chứng minh tồn tại số nguyên n sao cho a + n, b + n, c + n là các số đôi một nguyên tố cùng nhau. + Trên mặt phẳng ta vẽ 3333 đường tròn đôi một khác nhau và có bán kính bằng nhau. Chứng minh rằng luôn chọn ra được trong số đó 34 đường tròn mà các đường tròn này đôi một có điểm chung hoặc đôi một không có điểm chung.
Đề chọn đội tuyển HSG QG môn Toán năm 2022 trường chuyên Hùng Vương - Bình Dương
Đề thi chọn đội tuyển học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022 trường THPT chuyên Hùng Vương – Bình Dương gồm 02 trang với 07 bài toán dạng tự luận, kỳ thi được diễn ra trong hai ngày. Trích dẫn đề chọn đội tuyển HSG QG môn Toán năm 2022 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nhọn, không cân có các đường cao BE, CF cắt nhau tại H. Lấy điểm X trên đường thẳng BH và điểm Y trên đường thẳng CH sao cho tứ giác MXHY là hình bình hành. Gọi R là giao điểm của các đường thẳng XY, EF. a) Chứng minh rằng AR song song với BC. b) Chứng minh rằng AH là trục đẳng phương của đường tròn ngoại tiếp tam giác BHY và tam giác CHX. + Thầy chủ nhiệm đội tuyển đăng ký cho n học sinh tham gia các buổi học chuyên đề của viện Toán với tổng cộng m buổi. Kết thúc khóa học, các học sinh sẽ chia sẻ bài cho nhau cùng học. Biết rằng mỗi buổi, thấy đăng ký cho đúng 3 học sinh và không có 2 bạn nào học chung 2 buổi trở lên. a) Giả sử m = 7, tìm giá trị nhỏ nhất của n. b) Giả sử n = 15 và khi đăng ký xong thì Ban tổ chức ra thông báo mới là tối đa 10 bạn được tham gia. Hỏi thấy có cách nào loại đi 5 học sinh nào đó (và giữ nguyên buổi đăng ký của các học sinh khác) mà đội tuyển vẫn có đầy đủ bài của tất cả các buổi học được hay không? + Chứng minh rằng không tồn tại dãy số thực (xn) thỏa mãn x1 = 2 và với mọi số nguyên dương n.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Ninh Thuận
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Ninh Thuận gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Cần Thơ
Thứ Ba ngày 16 tháng 11 năm 2021, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn đội tuyển học sinh giỏi THPT môn Toán học dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Cần Thơ gồm 06 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Cần Thơ : + Cho tam giác ABC không là tam giác cân. Đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi P là hình chiếu của D lên EF và M là trung điểm của BC. Hai tia AP và IP cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại G và Q. Chứng minh rằng 4.1. Điểm Q thuộc đường tròn ngoại tiếp tam giác AEF. 4.2. Đường thẳng GD đi qua điểm chính giữa cung BC chứa A. 4.3. Điểm D là tâm đường tròn nội tiếp tam giác QGM. + Cho a, b, c là các số nguyên dương. Chứng minh rằng nếu là số nguyên thì abc là lập phương của một số nguyên. + Một công ty xây dựng đang lên kế hoạch thiết kế một khu phức hợp gồm tổ hợp 7 khu tiện ích hạ tầng tách biệt nhau (khu biệt thự, khu chung cư, trường học, trung tâm thương mại, bệnh viện, trung tâm hành chính và công viên). Ngoài việc tập trung xây dựng hệ thống hạ tầng, công ty này còn đặt ra mục tiêu là tăng cường chất lượng không khí trong khu phức hợp bằng cách xây dựng thêm các lối đi trồng nhiều cây xanh. Nếu xem mỗi khu tiện ích là một điểm trên bảng thiết kế thì người ta có thể thiết kế được nhiều nhất bao nhiêu lối đi với yêu cầu mỗi lối đi là một đường tròn đi qua đúng 4 trong 7 điểm đó.