Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Phước

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán lớp 9 cấp tỉnh năm 2022 - 2023 Đề học sinh giỏi môn Toán lớp 9 cấp tỉnh năm 2022 - 2023 Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Bình Phước. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 18 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi thú vị và phong phú, như sau: 1. Cho đường thẳng (d): mx + (m − 1)y – 2m + 1 = 0 (với m là tham số). Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m. 2. Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A di động trên đường tròn (O;R) sao cho tam giác ABC nhọn. Kẻ đường cao AD và trực tâm H của tam giác ABC. a) Chứng minh tam giác AMN cân khi đường thẳng chứa phân giác ngoài của góc BHC cắt AB, AC lần lượt tại các điểm M, N. b) Chứng minh 4 điểm P, E, F, Q thẳng hàng và OA vuông góc PQ khi các điểm E, F lần lượt là hình chiếu của D trên các đường thẳng BH, CH và các điểm P, Q lần lượt là hình chiếu của D trên các cạnh AB, AC. c) Chứng minh đường thẳng HK luôn đi qua một điểm cố định khi đường tròn ngoại tiếp tam giác AMN cắt đường phân giác trong của góc BAC tại K. 3. Xác định vị trí của điểm H để diện tích tam giác AMN đạt giá trị lớn nhất trong trường hợp tam giác cân tại A với điểm O là trung điểm của BC và điểm H chạy trên cung nhỏ EF của đường tròn tiếp xúc với các cạnh AB, AC tại E, F. Hãy cùng tham gia và thách thức bản thân với đề thi học sinh giỏi môn Toán lớp 9 cấp tỉnh năm 2022 - 2023 để trải nghiệm những câu hỏi hấp dẫn và phấn đấu cho thành công học tập!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.
Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.