Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020 2021 sở GD ĐT Hà Tĩnh

Nội dung Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020 2021 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020-2021 Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020-2021 Đề thi học sinh giỏi tỉnh Toán lớp 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian cho học sinh làm bài thi là 180 phút, kỳ thi diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn một số câu hỏi trong đề thi học sinh giỏi tỉnh Toán lớp 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh: + Câu 1: Một cửa hàng kinh doanh xe máy điện mua vào với chi phí 23 triệu đồng và bán ra với giá 27 triệu đồng mỗi chiếc. Nếu giảm giá bán xe xuống 100 nghìn đồng mỗi chiếc, số lượng xe bán ra trong một năm sẽ tăng thêm 20 chiếc. Hỏi doanh nghiệp cần bán với giá mới là bao nhiêu để lợi nhuận thu được sau khi giảm giá là cao nhất? + Câu 2: Cho tam giác ABC có góc A = 30 độ, bán kính đường tròn nội tiếp tam giác là √3. Tính giá trị của T = (sin B)^2 - (cos C)^2 và bán kính đường tròn ngoại tiếp tam giác ABC. + Câu 3: Trong mặt phẳng tọa độ Oxy, cho A(2;3), B(-1;5) và đường thẳng d: 2x + y + 1 = 0. Tìm tọa độ điểm C thuộc đường thẳng d và tọa độ điểm D thuộc đoạn thẳng AC, biết tam giác ABC cân tại B và DC = √5/5. Đây là một đề thi mang tính chất thách thức, đòi hỏi học sinh có kiến thức sâu rộng và khả năng suy luận logic tốt để giải quyết các bài toán phức tạp. Hy vọng rằng các em sẽ đạt kết quả cao và phấn đấu học tập toàn diện hơn sau kỳ thi này.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 10 năm 2020 - 2021 trường THPT Minh Châu - Hưng Yên
Đề học sinh giỏi Toán 10 năm học 2020 – 2021 trường THPT Minh Châu – Hưng Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề học sinh giỏi Toán 10 năm 2020 – 2021 trường THPT Minh Châu – Hưng Yên : + Cho phương trình bậc hai x2 – (m – 1)x + 2m2 – 8m + 6 = 0 (1) (với m là tham số). a) Tìm m để phương trình (1) có hai nghiệm. b) Giả sử 1 2 x x là hai nghiệm của phương trình (1). Hãy tìm giá trị lớn nhất và bé nhất của biểu thức A x x x x 1 2 1 2 2. + Cho hàm số: y = x2 – 4(m + 1)x + 2m2 + 2m + 1 (1). Tìm m để đồ thị hàm số (1) cắt đường thẳng y = -2x + 1 tại hai điểm phân biệt A, B sao cho trọng tâm tam giác OAB nằm trên Ox (O là gốc toạ độ). + Trong mặt phẳng Oxy cho A(1;2), B(-2;6), C(9;8). 1) Chứng minh: A, B, C là 3 đỉnh của tam giác và tam giác ABC vuông tại A. 2) Tính chu vi và diện tích tam giác ABC.
Đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Bảy ngày 03 tháng 04 năm 2021, trường THPT chuyên Lê Hồng Phong, quận 5, thành phố Hồ Chí Minh tổ chức kỳ thi Olympic truyền thống 30 tháng 4 môn Toán lớp 10 lần thứ XXVI (26) năm 2021. Đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong – TP HCM được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong – TP HCM : + Với số nguyên dương n 2, xét bảng vuông gồm có 2 1 2 1 n n ô vuông, người ta viết vào mỗi ô chỉ một trong 3 số 1, 0 hoặc 1 sao cho trong mỗi bảng con 2 2 luôn tìm được 3 ô có tổng bằng 0. Gọi n S là giá trị lớn nhất của tổng tất cả các số trong bảng. Chứng minh? + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn O. Tia AO cắt đoạn thẳng BC tại L. Gọi A là điểm đối xứng với A qua đường thẳng BC. Giả sử tiếp tuyến qua A của đường tròn ngoại tiếp tam giác ABC cắt các tia AB AC lần lượt tại các điểm D E. a. Chứng minh đường tròn ngoại tiếp các tam giác A B D, ACE, AAL cùng đi qua một điểm khác A. b. Gọi J là tâm đường tròn ngoại tiếp tam giác ADE. Chứng minh đường tròn ngoại tiếp tam giác JDE tiếp xúc với. + Cho a b c là độ dài các cạnh của một tam giác có chu vi bằng 2. Chứng minh?
Đề Olympic tháng 4 Toán 10 năm 2020 - 2021 sở GDĐT TP Hồ Chí Minh
Sáng thứ Bảy ngày 17 tháng 04 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi Olympic tháng 4 cấp THPT mở rộng môn Toán lớp 10 năm học 2020 – 2021. Đề Olympic tháng 4 Toán 10 năm 2020 – 2021 sở GD&ĐT TP Hồ Chí Minh gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút.
Đề Olympic Toán 10 năm 2020 - 2021 liên cụm trường THPT - Hà Nội
Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán 10 năm học 2020 – 2021. Đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Tìm tham số b và c sao cho hàm số có đồ thị là một đường parabol  với đỉnh là I(2;5). + Lập bảng biến thiên của hàm số. Từ đó hãy tìm tham số m sao cho phương trình có nghiệm duy nhất. + Cho tam giác ABC. Tam giác ABC có hai đường trung tuyến BM và CN vuông góc với nhau tại trọng tâm G. Tính theo a diện tích tam giác ABC.