Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Việt Yên - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Việt Yên, tỉnh Bắc Giang (mã đề 358). Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Việt Yên – Bắc Giang : + Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là 20% và mặt hàng Y là 15% so với giá niêm yết. Bà Hiền mua 2 món hàng X và 1 món hàng Y thì phải trả số tiền là 395000 đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là 30% và mặt hàng Y là 25% so với giá niêm yết. Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là 603000 đồng. Tính giá niêm yết của mỗi món hàng X và Y (Giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá). + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB AC. Ba đường cao AD, BE, CF của tam giác ABC (D, E, F là chân các đường cao) đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O;R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác ACMD nội tiếp đường tròn. b) Chứng minh rằng MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O;R) và đỉnh A di động trên cung lớn BC của đường tròn (O;R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định. + Công thức 3 h 04 x biểu diễn mối tương quan giữa cân nặng x (tính bằng kg) và chiều cao h (tính bằng m) của một con hươu cao cổ. Một con hươu cao cổ có chiều cao 2,56 m thì có cân nặng (kết quả làm tròn đến chữ số thập phân thứ nhất) là?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 9 năm 2020 - 2021 phòng GDĐT quận Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT quận Hai Bà Trưng – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Hai ngày 24 tháng 05 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT quận Hai Bà Trưng – Hà Nội : + Cho parabol 2 y x P và đường thẳng y mx 2 d (m là tham số). a) Chứng minh P và d luôn cắt nhau tại hai điểm phân biệt A và B nằm về hai phía của trục tung. b) Tìm m để diện tích tam giác OAB bằng 3 (O là gốc tọa độ). + Cho đường tròn (O R) đường kính AB. Lấy điểm C thuộc đường tròn sao cho AC R; điểm D thuộc cung nhỏ BC (D khác B C). Kéo dài AC và BD cắt nhau tại E; kẻ EH vuông góc với AB tại H (H thuộc AB), EH cắt AD tại I. a) Chứng minh tứ giác AHDE là tứ giác nội tiếp. b) Kéo dài DH cắt (O R) tại điểm thứ hai là F. Chứng minh CF song song với EH và tam giác BCF là tam giác đều. c) Giả sử điểm D thay đổi trên cung nhỏ BC nhưng vẫn thỏa mãn điều kiện của đề bài. Xác định vị trí của D để chu vi tứ giác ABDC đạt giá trị lớn nhất. + Cho ba số thực dương abc có tổng thỏa mãn điều kiện abc 3. Chứng minh bất đẳng thức sau?
Đề KSCL môn Toán lớp 9 năm 2020 - 2021 trường THCS Nguyễn Du - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL môn Toán lớp 9 năm 2020 – 2021 trường THCS Nguyễn Du – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2021. Trích dẫn đề KSCL môn Toán lớp 9 năm 2020 – 2021 trường THCS Nguyễn Du – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho parabol 2 Pyx và đường thẳng d y mx 3. a) Chứng minh với mọi giá trị của m, (d) luôn cắt (P) tại hai điểm phân biệt có hoành độ 1 2 x x. b) Tìm tất cả các giá trị của m để 2 1 2 x mx 4. + Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O). Các đường cao AD, BE, CF cùng đi qua trực tâm H. Gọi M N lần lượt là hình chiếu vuông góc của D lên AB AC. Đường thẳng MN cắt BE tại điểm P. Gọi S G lần lượt là giao điểm của EF MN với đường thẳng BC. 1) Chứng minh bốn điểm AM DN cùng thuộc một đường tròn. 2) Chứng minh tứ giác BMPD là tứ giác nội tiếp và tứ giác DPEN là hình chữ nhật. 3) Gọi K là điểm đối xứng với D qua A, và L là hình chiếu vuông góc của D lên SK. Chứng minh G là trung điểm của đoạn thẳng SD và trung điểm của đoạn thẳng DL nằm trên đường tròn (O). + Cho a b là các số thực dương thỏa mãn 33 55 abab. Tìm giá trị lớn nhất của biểu thức 2 2 P a ab b.
Đề KSCL Toán 9 đợt 3 năm 2020 - 2021 phòng GDĐT Kim Thành - Hải Dương
Đề KSCL (khảo sát chất lượng) Toán 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề KSCL Toán 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương : + Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 2 ngày, tổ thứ hai may trong 3 ngày thì cả hai tổ may được 470 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo? + Cho phương trình: x^2 + 3x + m – 1 = 0 (x là ẩn số). Tìm m để phương trình có hai nghiệm x1; x2 thỏa mãn. + Cho các số x, y, z, t không âm thoả mãn: x.y + yz + zt + tx = 1. Tìm giá trị nhỏ nhất của biểu thức: 5×2 + 4y2 + 5z2 + t2.
Đề KSCL Toán 9 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 29 tháng 04 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn một ngôi nhà, mất 4 ngày thì xong việc. Hai người cùng làm trong 1 ngày thì người thứ nhất có việc bận nên một mình người thứ hai làm trong 6 ngày nữa thì mới xong công việc. Hỏi mỗi người làm việc một mình thì sau bao lâu xong công việc? + Cho một hình trụ có bán kính đáy là 3cm. Biết diện tích xung quanh của hình trụ là 907 cm2. Tính thể tích của hình trụ. + Cho đường tròn (O) đường kính AB. Qua trung điểm C của OA vẽ dây DE vuông góc với OA. Gọi K là điểm tùy ý trên cung nhỏ BD (K khác B D). H là giao điểm của AK và DE. a) Chứng minh tứ giác BCHK là tứ giác nội tiếp. b) Chứng minh AH.AK = AD2. c) Lấy điểm F trên đoạn KE sao cho KF = KB. Chứng minh tam giác KFB là tam giác đều. Xác định vị trí của điểm K trên cung nhỏ BD để tổng KD + KB + KE đạt giá trị lớn nhất.