Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Việt Đức - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Việt Đức, thành phố Hà Nội; đề thi mã đề 804 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên phát đề). Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Việt Đức – Hà Nội : + Khẳng định nào sau đây đúng? A. Góc giữa đường thẳng d và mặt phẳng (P) có số đo từ 0° đến 180°. B. Góc giữa đường thẳng d và mặt phẳng (P) có thể là góc tù. C. Góc giữa đường thẳng d và mặt phẳng (P) là góc giữa véctơ chỉ phương của đường thẳng d và véctơ chỉ phương của hình chiếu d’ của d trên mặt phẳng (P). D. Nếu đường thẳng d không vuông góc với mặt phẳng (P) thì góc giữa đường thẳng d và mặt phẳng (P) là góc giữa đường thẳng d và hình chiếu d’ của d trên mặt phẳng (P). + Một chất điểm chuyển động với phương trình quãng đường S(t) = t3 – 9t2 + 30t (đơn vị thời gian là giây, đơn vị độ dài là m) và vận tốc giới hạn của chất điểm là 30 (m/s). Hỏi trong khoảng thời gian nào để chất điểm chuyển động an toàn (chuyển động không vượt quá vận tốc giới hạn)? A. Từ lúc bắt đầu đến giây thứ sáu. C. Từ giây thứ hai đến giây thứ tám. B. Từ giây thứ ba đến giây thứ bảy. D. Từ giây thứ năm đến giây thứ chín. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và SA = SB = SC. Vẽ SH vuông góc (ABC), H thuộc (ABC). Khẳng định nào sau đây đúng? A. H trùng với trọng tâm tam giác ABC. C. H trùng với trung điểm của BC. B. H trùng với trung điểm của AC. D. H trùng với trực tâm tam giác ABC.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trần Quang Khải, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Tìm các đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến với đồ thị (C) của hàm số 3 y x x 3 tại điểm A. + Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B và BC a; SA vuông góc mặt phẳng ABC và SA a 3. a/ Chứng minh: BC SAB. b/ Gọi M là trung điểm của đoạn AC. Chứng minh rằng SBM SAC. c/ Tính góc giữa hai mặt phẳng SBC và SAC. d/ Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Cho hình chóp S.ABCD, đáy ABCD là hình vuông tâm O. SB ABCD và SD a AB a 3 BM vuông góc SC tại M. 1) Chứng minh rằng SAD SAB và tam giác SCD là tam giác vuông. 2) Chứng minh rằng AM là đường cao của tam giác SAC. 3) Tính góc giữa hai mặt phẳng (SAD) và (ABCD). + Viết phương trình tiếp tuyến của đồ thị biết tiếp tuyến song song với đường thẳng d y x 4 7. + Gọi 1 2 k k lần lượt là hệ số góc của các tiếp tuyến với đồ thị tại các điểm có hoành độ bằng 1 x và 2 x. Tìm m để 1 2 k k đạt giá trị lớn nhất biết rằng 1 2 x x là hai nghiệm của phương trình 2 2 2 1 0.