Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài toán về đường tròn

Nội dung Một số bài toán về đường tròn Bản PDF - Nội dung bài viết Một số bài toán về đường tròn Một số bài toán về đường tròn Trong tài liệu có tổng cộng 116 trang, chúng ta sẽ tìm thấy một số bài toán về đường tròn được tuyển chọn kỹ lưỡng, đặc biệt là những bài toán hay và khó. Các bài toán này đi kèm với đáp án và lời giải chi tiết, giúp học sinh dễ dàng tham khảo trong quá trình ôn tập chuẩn bị thi vào lớp 10 môn Toán, cũng như ôn thi học sinh giỏi môn Toán ở bậc THCS. A. Một số kiến thức cần nhớ I. Sự xác định đường tròn: Tài liệu bao gồm định nghĩa, vị trí tương đối của một điểm đối với một đường tròn, cách xác định đường tròn và tính chất đối xứng của đường tròn. II. Liên hệ giữa đường kính và dây cung: So sánh độ dài của đường kính và dây, quan hệ vuông góc giữa đường kính và dây, liên hệ giữa dây và khoảng cách từ tâm đến dây. III. Vị trí tương đối của đường thẳng và đường tròn: Bao gồm vị trí tương đối của đường thẳng và đường tròn, dấu hiệu nhận biết tiếp tuyến của đường tròn, tính chất của hai tiếp tuyến cắt nhau, đường tròn nội tiếp tam giác và đường tròn bàng tiếp tam giác. IV. Vị trí tương đối của hai đường tròn: Bao gồm tính chất của đường nối tâm, vị trí tương đối của hai đường tròn và tiếp tuyến chung của hai đường tròn. V. Góc với đường tròn: Bao gồm góc ở tâm, góc nội tiếp, góc tạo bởi tia tiếp tuyến với dây cung, góc có đỉnh ở bên trong hoặc ở ngoài đường tròn, tứ giác nội tiếp, đường tròn ngoại tiếp và đường tròn nội tiếp. VI. Một số kiến thức bổ sung: Bao gồm một số tính chất về tiếp tuyến, dấu hiệu nhận biết tứ giác nội tiếp và một số định lí hình học nổi tiếng. B. Một số ví dụ minh họa Tài liệu cũng cung cấp một số ví dụ minh họa để giúp học sinh hiểu rõ hơn về các kiến thức được trình bày. C. Bài tập tự luyện Để giúp học sinh ôn tập và rèn luyện, tài liệu cung cấp một loạt bài tập tự luyện với đáp án chi tiết. D. Hướng dẫn giải Cuối cùng, tài liệu cung cấp hướng dẫn giải cho các bài tập, giúp học sinh tự kiểm tra và tự học sau khi đã tự luyện.

Nguồn: sytu.vn

Đọc Sách

Các dạng toán thực tế ôn thi vào lớp 10 môn Toán
Tài liệu gồm 188 trang, tuyển tập các dạng toán thực tế ôn thi vào lớp 10 môn Toán, có đáp án và lời giải chi tiết. Dạng toán 1 : Dạng toán chuyển động. Phương pháp giải: Chú ý dựa vào công thức S = vt, trong đó S là quãng đường, v là vận tốc và t là thời gian. Ngoài ra, theo nguyên lí cộng vận tốc trong bài toán chuyển động tàu, thuyền trên mặt nước, ta có: + Vận tốc xuôi dòng = vận tốc thực + vận tốc dòng nước. + Vận tốc ngược dòng = vận tốc thực – vận tốc dòng nước. + Vận tốc thực luôn lớn hơn vận tốc dòng nước. Dạng toán 2 : Dạng toán năng suất – công việc. Phương pháp giải: + Coi khối lượng công việc là 1 đơn vị. + NS 1 + NS 2 = tổng NS. + x giờ (ngày) làm xong CV thì mỗi giờ (ngày) làm được 1/x CV đó. + 1 giờ (ngày) làm được 1/x CV thì a giờ (ngày) làm được a.1/x CV. Dạng toán 3 : Dạng toán liên quan đến tuổi. Trích dẫn: Ở một trường Trung học cơ sở, tuổi trung bình của các giáo viên nữ trong trường là 36, tuổi trung bình của các giáo viên nam trong trường là 40. Tính tuổi trung bình của các giáo viên nam và các giáo viên nữ biết rằng số giáo viên nữ gấp ba lần số giáo viên nam? Dạng toán 4 : Dạng toán liên quan đến kinh doanh. Trích dẫn: Nhà may A sản xuất một lô áo gồm 200 chiếc áo với giá vốn là 30 000 000 (đồng) và giá bán mỗi chiếc áo sẽ là 300 000 (đồng). Khi đó gọi K (đồng) là số tiền lời (hoặc lỗ) của nhà may thu được khi bán t chiếc áo. a) Thiết lập hàm số của K theo t. b) Hỏi cần phải bán bao nhiêu chiếc áo mới có thể thu hồi được vốn ban đầu? c) Để lời được 6 000 000 đồng thì cần phải bán bao nhiêu chiếc áo? Dạng toán 5 : Dạng toán hình học. Trích dẫn: Có hai lọ thủy tinh hình trụ, lọ thứ nhất phía bên trong có đường kính đáy là 30cm, chiều cao 20cm, đựng đầy nước. Lọ thứ hai bên trong có đường kính đáy là 40cm, chiều cao 12cm. Hỏi nếu đổ hết nước từ trong lọ thứ nhất sang lọ thứ hai nước có bị tràn ra ngoài không? Tại sao? (Lấy π ≈ 3,14). Dạng toán 6 : Dạng toán liên quan đến bộ môn Hóa học. Trích dẫn: Người ta đổ thêm 100 g nước vào một dung dịch chứa 20 g muối thì nồng độ của dung dịch giảm đi 10% . Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu nước. Dạng toán 7 : Dạng toán liên quan đến bộ môn Vật lý. Trích dẫn: Để ước tính tốc độ s (dặm/giờ) của một chiếc xe, cảnh sát sử dụng công thức: s với d (tính bằng feet) là độ dài vết trượt của bánh xe và f là hệ số ma sát. a) Trên một đoạn đường (có gắn bảng báo tốc độ bên trên) có hệ số ma sát là 0,73 và vết trượt của một xe 4 bánh sau khi thắng lại là 49,7 feet. Hỏi xe có vượt quá tốc độ theo biển báo trên đoạn đường đó không? b) Nếu xe chạy với tốc độ 48km/h trên đoạn đường có hệ số ma sát là 0,45 thì khi thắng lại vết trượt trên đường dài bao nhiêu feet? Dạng toán 8 : Dạng toán tổng hợp. Để biết được ngày n tháng t năm 2020 là ngày thứ mấy trong tuần. Đầu tiên, đi tính giá trị biểu thức T, ở đây được xác định như sau. Sau đó lấy T chia cho 7 ta được số dư r. Nếu r = 0 thì ngày đó là ngày thứ Bảy. Nếu r = 1 thì ngày đó là ngày Chủ Nhật. Nếu r = 2 thì ngày đó là ngày thứ Hai. Nếu r = 3 thì ngày đó là ngày thứ Ba. Nếu r = 6 thì ngày đó là ngày thứ Sáu. Hãy sử dụng quy tắc trên để xác định ngày 30 / 4 / 2020 là ngày thứ mấy?
Phân loại theo chương, bài các đề tuyển sinh lớp 10 môn Toán năm học 2020 - 2021
Tài liệu gồm 224 trang, được tổng hợp bởi thầy giáo Diệp Tuân, phân loại theo chương, bài các đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021. Chương 1. Các lớp 6 – 7 – 8. Chương 2. Căn thức bậc hai. Chương 3. Hàm số bậc nhất. Chương 4. Hệ hai phương trình bậc nhất hai ẩn. Chương 5. Hàm số y = ax^2 (a khác 0) – phương trình bậc hai. Chương 6. Hệ thức lượng trong tam giác vuông. Chương 7. Đường tròn. Chương 8. Góc với đường tròn. Chương 9. Hình trụ – hình nón – hình cầu. Chương 10. Bất đẳng thức.
Các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên Toán
Tài liệu gồm 62 trang, được biên soạn bởi nhóm tác giả Mathpiad − Tạp chí và tư liệu toán học: Phan Quang Đạt − Nguyễn Nhất Huy − Dương Quỳnh Châu, tổng hợp các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên Toán, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 chuyên Toán. Chương I : Một số kiến thức sử dụng trong tài liệu. 1 Các định nghĩa ngoài sách giáo khoa. + Số chính phương là số có thể biểu diễn dưới dạng bình phương của một số tự nhiên. + Số lập phương là số có thể biểu diễn dưới dạng lập phương của một số nguyên. 2 Các kí hiệu, quy ước ngoài sách giáo khoa. + Kí hiệu a | b dùng thay cho mệnh đề “a là ước của b”, và đọc là “a chia hết b”. + Kí hiệu (a,b) dùng để chỉ ước chung lớn nhất của a và b. Đôi lúc, nó còn dùng để chỉ cặp số (a,b), vì thế cần phân biệt rõ. + Kí hiệu a ≡ b (mod m) dùng thay cho mệnh đề “a và b có cùng số dư khi chia cho m” và đọc là “a đồng dư với b theo modulo m”. 3 Các hằng đẳng thức mở rộng. 4 Các tính chất về ước chung lớn nhất. + Với các số nguyên a, b, c khác 0 thỏa mãn c | ab và (a,c) = 1, ta có thể suy ra c | b. + Với các số nguyên a, b, c khác 0 thỏa mãn ab = c2 và (a,c) = 1, ta có |a| và |b| là hai số chính phương. + Với các số nguyên a, b, c khác 0 thỏa mãn ab = c3 và (a,c) = 1, ta có a và b là hai số lập phương. 5 Các tính chất về đồng dư thức và chia hết. (a) Tính chia hết của tổng, tích các số nguyên liên tiếp. + Tổng của n số nguyên liên tiếp luôn chia hết cho n. + Tích của n số nguyên liên tiếp luôn chia hết cho n!, ở đây n! là tích của tất cả các số tự nhiên từ 1 đến n. (b) Nếu a ≡ b (mod m). (c) Một số chính phương bất kì chỉ có thể: + Đồng dư với 0 hoặc 1 theo modulo 3. + Đồng dư với 0 hoặc 1 theo modulo 4. + Đồng dư với 0,1 hoặc 4 theo modulo 8. (d) Định lý Fermat nhỏ: Cho p là số nguyên tố và a là số nguyên dương thỏa mãn a không chia hết cho p, khi đó a^ p − 1 ≡ 1 (mod p). 6 Bổ đề kẹp. Giữa hai lũy thừa số mũ n liên tiếp, không tồn tại một lũy thừa cơ số n nào. Hệ quả: với mọi số nguyên a: + Không có số chính phương nào nằm giữa a2 và (a + 1)2. + Số chính phương duy nhất nằm giữa a2 và (a + 2)2 là (a + 1)2. + Có đúng k − 1 số chính phương nằm giữa a2 và (a + k)2. 7 Bổ đề về nghiệm nguyên của phương trình bậc hai. Nếu phương trình bậc hai với hệ số nguyên ax2 + bx + c = 0 có hai nghiệm nguyên (không nhất thiết phân biệt) thì ∆ = b2 −4ac là số chính phương. Chương II : Giới thiệu một số bài toán số học trong đề thi vào lớp 10 chuyên Toán. Chương III : Lời giải tham khảo.
Một số phương pháp chứng minh bất đẳng thức
Tài liệu gồm 78 trang, hướng dẫn một số phương pháp chứng minh bất đẳng thức, đây thường là bài toán khó nhất trong các đề thi tuyển sinh vào lớp 10 môn Toán. I. Bất đẳng thức Côsi. + Dạng 1. Dạng tổng sang tích. + Dạng 2. Dạng tích sang tổng, nhân bằng số thích hợp. + Dạng 3. Qua một bước biến đổi rồi sử dụng bất đẳng thức Côsi. + Dạng 4. Ghép cặp đôi. + Dạng 5. Dự đoán kết quả rồi tách thích hợp. + Dạng 6. Kết hợp đặt ẩn phụ và dự đoán kết quả. + Dạng 7. Tìm lại điều kiện của ẩn. II. Bất đẳng thức Bunhia. III. Phương pháp biến đổi tương đương. + Dạng 1. Đưa về bình phương. + Dạng 2. Tạo ra bậc hai bằng cách nhân hai bậc một. + Dạng 3. Tạo ra ab + bc + ca. + Dạng 4. Sử dụng tính chất trong ba số bất kì luôn tồn tại hai số có tích không âm. + Dạng 5. Sử dụng tính chất của một số bị chặn từ 0 đến 1. + Dạng 6. Dự đoán kết quả rồi xét hiệu. Hệ thống bài tập sử dụng trong chủ đề. 1. Bất đẳng thức Côsi. 2. Bất đẳng thức Bunhia. 3. Phương pháp biến đổi tương đương.