Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 câu trắc nghiệm tổng ôn số phức có lời giải chi tiết - Lê Viết Nhơn

Tài liệu gồm 15 trang tuyển tập 50 câu hỏi trắc nghiệm tổng ôn chuyên đề số phức được trích từ các đề thi thử THPT Quốc gia năm 2017. Các câu hỏi được phân tích và giải chi tiết. Trích dẫn tài liệu : + Cho số phức z = 3 – 2i. Tìm phần thực và phần ảo của số phức z A. Phần thực bằng –3 và Phần ảo bằng –2i B. Phần thực bằng –3 và Phần ảo bằng –2 C. Phần thực bằng 3 và Phần ảo bằng 2i D. Phần thực bằng 3 và Phần ảo bằng 2 [ads] + Trên trường số phức C, cho phương trình az^2 + bz + c = 0 (a, b, c ∈ R, a ≠ 0). Chọn khẳng định sai: A. Phương trình luôn có nghiệm B. Tổng hai nghiệm bằng -b/a C. Tích hai nghiệm bằng c/a D. Δ = b^2 – 4ac thì phương trình vô nghiệm + Trong mặt phẳng phức, gọi M là điểm biểu diễn cho số phức z = a + bi (a, b ∈ R, a.b ≠ 0). M’ là diểm biểu diễn cho số phức z‾. Mệnh đề nào sau đây đúng? A. M’ đối xứng với M qua Oy B. M’ đối xứng với M qua Ox C. M’ đối xứng với M qua O D. M’ đối xứng với M qua đường thẳng y = x

Nguồn: toanmath.com

Đọc Sách

Chuyên đề cực trị số phức
Tài liệu gồm 60 trang, phân dạng và hướng dẫn giải các bài tập trắc nghiệm vận dụng cao (VDC) chuyên đề cực trị số phức, giúp học sinh chinh phục mức điểm 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. A. MỘT SỐ TÍNH CHẤT CẦN NHỚ 1. Môđun của số phức. 2. Một số quỹ tích nên nhớ. B. MỘT SỐ DẠNG TOÁN THƯỜNG GẶP Dạng 1: Quỹ tích điểm biểu diễn số phức là đường thẳng. Dạng 2: Quỹ tích điểm biểu diễn số phức là đường tròn. Dạng 3: Quỹ tích điểm biểu diễn số phức là Elip. C. BÀI TẬP ÁP DỤNG
Tổng ôn tập TN THPT 2021 môn Toán Số phức
Tài liệu gồm 84 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề số phức, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 4, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Số phức: 1. Mức độ nhận biết: 81 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 08). 2. Mức độ thông hiểu: 75 câu. + Câu hỏi và bài tập (Trang 21). + Đáp án và lời giải chi tiết (Trang 28). 3. Mức độ vận dụng thấp: 42 câu. + Câu hỏi và bài tập (Trang 44). + Đáp án và lời giải chi tiết (Trang 48). 4. Mức độ vận dụng cao: 29 câu. + Câu hỏi và bài tập (Trang 63). + Đáp án và lời giải chi tiết (Trang 67).
Tài liệu tự học chuyên đề số phức - Bùi Đình Thông
Tài liệu gồm 68 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, hướng dẫn học sinh lớp 12 tự học chuyên đề số phức (Giải tích 12 chương 4). Bài 1. Mở đầu về số phức. Bài 2. Phép tính số phức. Bài tập rèn luyện số phức và các tính chất. Bài tập rèn luyện các phép toán số phức. Bài toán quỹ tích (tập hợp điểm). Bài tập rèn luyện tìm tập hợp điểm của số phức. Bài 3. Phương trình bậc hai số phức. Bài tập rèn luyện phương trình bậc hai số phức. Cực trị của số phức. Bài tập rèn luyện cực trị của số phức.
Lý thuyết và bài tập số phức có đáp án - Lư Sĩ Pháp
Tài liệu gồm 45 trang, được biên soạn bởi thầy giáo Lư Sĩ Pháp, tóm tắt lý thuyết, phương pháp giải các dạng toán và tuyển chọn các bài tập tự luận + trắc nghiệm số phức có đáp án, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi tốt nghiệp THPT môn Toán. A. KIẾN THỨC CẦN NẮM 1. Số phức. 2. Các phép toán trên số phức. 3. Mối liên hệ giữa z và z‾. 4. Phương trình bậc hai với hệ số thực. 5. Cực trị số phức a. Bất đẳng thức tam giác. b. Công thức trung tuyến. c. Tập hợp điểm. 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z|. Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R với R > 0. Tìm giá trị nhỏ nhất, lớn nhất của |z|. Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1 với r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2|. Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k với k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z|. Dạng 4. Cho hai số phức z1 và z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2|. B. BÀI TẬP TỰ LUẬN Dạng 1. Tìm số phức, số phức liên hợp, phần thực, phần ảo, môđun của một số phức. Dạng 2. Nhìn vào hệ tọa độ Oxy xác định tọa độ của điểm biểu diễn số phức. Dạng 3. Tìm tọa độ điểm biểu diễn của số phức trong mặt phẳng tọa độ Oxy. Dạng 4. Giải phương trình bậc hai trên tập số phức và vận dụng định lí Vi-ét. C. CÂU HỎI TRẮC NGHIỆM