Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Duy Tiên - Hà Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo thị xã Duy Tiên, tỉnh Hà Nam. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Duy Tiên – Hà Nam : + Cho ba số x, y, z khác 0 thỏa mãn điều kiện. Chứng minh rằng trong ba số x, y, z tồn tại hai số đối nhau. + Cho đa thức f(x). Biết dư trong các phép chia f(x) cho x – 1 và x + 1 lần lượt là 1 và 3. Hãy tìm dư trong phép chia f(x) cho x2 – 1. + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh rằng tứ giác AEMD là hình chữ nhật. b) Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. c) Chứng minh rằng AD2 AM2 AN2.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi huyện Toán 8 năm 2016 - 2017 phòng GDĐT Thạch Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Thạch Hà – Hà Tĩnh; đề thi có đáp án, lời giải và thang điểm. Trích dẫn đề thi học sinh giỏi huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Giải vô địch bóng đá quốc gia Việt Nam 2016-2017 có 14 đội tham gia. Mỗi đội phải thi đấu cới các đội còn lại 1 trận ở sân nhà và một trận ở sân khách. Kết thúc mùa giải có tất cả bao nhiêu trận đấu? + Trong 1 hộp có 60 viên bi màu, gồm 25 bi màu đỏ, 20 bi màu xanh, và 15 bi màu vàng. Cần lấy ra ít nhất là bao nhiêu viên bi (mà không cần nhìn vào hộp) để có 3 viên bi khác màu? + Cho một lưới ô vuông có kích thước 5×5 ô. Người ta điền vào mỗi ô của lưới một trong các số -1; 0; 1. Xét tổng của các số theo từng cột, theo từng hàng và theo từng hàng chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau.
Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Nga Sơn – Thanh Hóa; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Một người dự định đi xe máy từ A đến B với vận tốc 30km/h, nhưng sau khi đi được 1 giờ người ấy nghỉ hết 15 phút, do đó phải tăng vận tốc thêm 10km/h để đến B đúng giờ đã định. Tính quãng đường AB? + Cho hình vuông ABCD có AC cắt BD tại O, M là điểm bất kỳ thuộc cạnh BC (M khác B, C).Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM. a) Chứng minh: ∆OEM vuông cân. b) Chứng minh: ME // BN. c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng. + Cho các số thực dương a, b, c thỏa mãn a + b + c = 2016. Tìm giá trị nhỏ nhất của biểu thức: P.
Đề thi HSG Toán 8 cấp huyện năm 2016 - 2017 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 cấp huyện năm 2016 – 2017 phòng GD&ĐT Hậu Lộc – Thanh Hóa; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi HSG Toán 8 cấp huyện năm 2016 – 2017 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Cho tam giác ABC có ba góc nhọn, các đường cao BD, CE cắt nhau tại H. a) Chứng minh tam giác ABD đồng dạng tam giác ACE. b) Chứng minh BH.HD = CH.HE. c) Nối D với E, cho biết BC = a, AB = AC = b. Tính độ dài đoạn thẳng DE theo a. + Tìm số nguyên x thỏa mãn cả hai bất phương trình. + Phân tích đa thức sau thành nhân tử.
Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. a. Chứng minh: KF // EH. b. Chứng minh: các đường thẳng EK, HF, BD đồng quy. c. Chứng minh: SMKAE = SMHCF. + Cho biểu thức: A. a. Rút gọn A. b. Tìm giá trị nguyên của x để A có giá trị nguyên. + Chứng minh rằng: n3 + 2012n chia hết cho 48 với mọi n chẵn.