Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn tập TN THPT 2020 môn Toán Phép đếm - cấp số cộng - cấp số nhân

Tài liệu gồm 19 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các chuyên đề: Quy tắc cộng, quy tắc nhân và hoán vị, tổ hợp, chỉnh hợp; Dãy số, cấp số cộng và cấp số nhân … có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phép đếm – cấp số cộng – cấp số nhân: A. PHÉP ĐẾM 1. Lý thuyết. + Quy tắc nhân: Để hoàn thành công việc cần chia ra k giai đoạn → Sử dụng quy tắc nhân. + Quy tắc cộng: Để hoàn thành công việc bằng nhiều trường hợp → Sử dụng quy tắc cộng. + Hoán vị: Xếp n phần tử theo thứ tự → Sử dụng hoán vị. + Tổ hợp: Chọn k phần tử trong n phần tử tùy ý → Sử dụng tổ hợp. + Chỉnh hợp: Chọn k phần tử trong n phần tử và xếp → Sử dụng chỉnh hợp. 2. Câu hỏi và bài tập cùng mức độ đề minh họa. [ads] B. CẤP SỐ CỘNG – CẤP SỐ NHÂN 1. Lý thuyết. + Cấp số cộng: Một dãy số được gọi là cấp số cộng nếu số liền sau trừ số liền trước bằng một hằng số không thay đổi, hằng số không thay đổi đó được gọi là công sai d. + Cấp số nhân: Một dãy số được gọi là cấp số nhân nếu số liền sau chia số liền trước bằng một hằng số không thay đổi, hằng số không thay đổi đó được gọi là công bội q. 2. Câu hỏi và bài tập cùng mức độ đề minh họa.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề dãy số
Tài liệu gồm 31 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề dãy số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Định nghĩa dãy số. 2) Định nghĩa dãy số hữu hạn. 3) Dãy số tăng và dãy số giảm. 4) Dãy số bị chặn. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA + Dạng 1. Xác định dãy số. + Dạng 2. Xét tính đơn điệu của dãy số. + Dạng 3. Xét tính bị chặn của dãy số. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề phương pháp quy nạp toán học
Tài liệu gồm 10 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương pháp quy nạp toán học, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Để chứng minh một mệnh đề P(n) đúng với mọi n N* thì ta thực hiện theo các bước sau đây: + Kiểm tra mệnh đề đúng với n 1. + Giả sử mệnh đề đã đúng với n k đưa ra được biểu thức của P k ta gọi là giả thiết quy nạp. + Với giả thiết P k đã đúng, ta chứng minh mệnh đề cũng đúng với n k 1. 2) Để chứng minh một mệnh đề P(n) đúng với mọi n ≥ p (p là số một số tự nhiên) thì ta thực hiện như sau: + Kiểm tra mệnh đề đúng với n p. + Giả sử mệnh đề đã đúng với n k đưa ra được biểu thức của P k ta gọi là giả thiết quy nạp. + Với giả thiết P k đã đúng, ta chứng minh mệnh đề cũng đúng với n k 1. II. HỆ THỐNG VÍ DỤ MINH HỌA
Tài liệu ôn thi HSG Quốc gia môn Toán chủ đề dãy số - Nguyễn Hoàng Vinh
Tài liệu gồm 91 trang, được biên soạn bởi tác giả Nguyễn Hoàng Vinh, hướng dẫn ôn thi HSG Quốc gia môn Toán chủ đề dãy số. Phần 1 : 1. Tính giới hạn theo định nghĩa, định lý kẹp, định lý Weierstrass, dùng công thức tổng quát. 2. Các tính chất, đánh giá xung quanh dãy số. Phần 2 : Định nghĩa giới hạn, tiêu chuẩn Cauchy và bài tập lý thuyết. Phần 3 : Các bài toán về giới hạn và đánh giá trên dãy số.
Phân loại và phương pháp giải bài tập dãy số, cấp số cộng và cấp số nhân
Tài liệu gồm 65 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập dãy số, cấp số cộng và cấp số nhân, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3 (Toán 11). BÀI 1 . PHƯƠNG PHÁP QUY NẠP TOÁN HỌC. Dạng 1. Chứng minh đẳng thức. Dạng 2. Chứng minh bất đẳng thức. Dạng 3. Chứng minh một tính chất. Dạng 4. Một số bài toán khác. BÀI 2 . DÃY SỐ. Dạng 1. Tìm số hạng của dãy số. Dạng 2. Tính tăng giảm và bị chặn của dãy số. BÀI 3 . CẤP SỐ CỘNG. Dạng 1. Xác định cấp số cộng, công sai và số hạng của cấp số cộng. Dạng 2. Tính tổng các số hạng trong một cấp số cộng. Dạng 3. Chứng minh một hệ thức trong cấp số cộng. Dạng 4. Giải phương trình (tìm x trong cấp số cộng). BÀI 4 . CẤP SỐ NHÂN. Dạng 1. Xác định cấp số nhân, số hạng, công bội của cấp số nhân. Dạng 2. Tính tổng của cấp số nhân. Dạng 3. Các bài toán thực tế.