Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề số hữu tỉ - số thực

Tài liệu gồm 42 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề số hữu tỉ – số thực trong chương trình Đại số 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề số hữu tỉ – số thực: BÀI 1 . TẬP HỢP Q CÁC SỐ HỮU TỈ. + Dạng 1. Sử dụng các kí hiệu. + Dạng 2. Biểu diễn số hữu tỉ. + Dạng 3. So sánh các số hữu tỉ. BÀI 2 . CỘNG TRỪ SỐ HỮU TỈ. + Dạng 1. Cộng trừ hai số hữu tỉ. + Dạng 2. Viết một số hữu tỉ dưới dạng tổng hoặc hiệu của hai số hữu tỉ. + Dạng 3. Tính tổng hoặc hiệu của nhiều số hữu tỉ. + Dạng 4. Tìm số hạng chưa biết trong một tổng hoặc một hiệu. + Dạng 5. Tính giá trị của biểu thức có nhiều dấu ngoặc. + Dạng 6. Tìm phần nguyên, phần lẻ của số hữu tỉ. BÀI 3 . NHÂN, CHIA SỐ HỮU TỈ. + Dạng 1. Nhân, chia hai số hữu tỉ. + Dạng 2. Viết một số hữu tỉ dưới dạng tích hoặc thương của hai số hữu tỉ. + Dạng 3. Thực hiện các phép tính với nhiều số hữu tỉ. + Dạng 4. Lập biểu thức từ các số cho trước. BÀI 4 . GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TỈ. CỘNG, TRỪ, NHÂN, CHIA SỐ THẬP PHÂN. + Dạng 1. Các bài tập về dấu giá trị tuyệt đối của một số hữu tỉ. + Dạng 2. Biểu diễn số hữu tỉ bằng các phân số khác nhau. + Dạng 3. Cộng, trừ, nhân, chia các số thập phân. + Dạng 4. So sánh các số hữu tỉ. + Dạng 5. Sử dụng máy tình bỏ túi để làm các phép tính cộng, trừ, nhân, chia số thập phân. BÀI 5 & 6 . LŨY THỪA CỦA MỘT SỐ HỮU TỈ. + Dạng 1. Sử dụng định nghĩa của lũy thừa với số mũ tự nhiên. + Dạng 2. Tính tích và thương của hai lũy thừa cùng cơ số. + Dạng 3. Tính lũy thừa của một lũy thừa. + Dạng 4. Tính lũy thừa của một tích, lũy thừa của một thương. + Dạng 5. Tìm số mũ của một lũy thừa. + Dạng 6. Tìm cơ số của một lũy thừa. + Dạng 7. Tính giá trị của biểu thức. [ads] BÀI 7 . TỈ LỆ THỨC. + Dạng 1. Thay tỉ số giữa các số hữa tỉ bằng tỉ số giữa các số nguyên. + Dạng 2. Lập tỉ lệ thức từ các tỉ số cho trước. + Dạng 3. Lập tỉ lệ thức từ đẳng thức cho trước, từ một tỉ lệ thức cho trước, từ các số cho trước. + Dạng 4. Tìm số hạng chưa biết của một tỉ lệ thức. BÀI 8 . TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU. + Dạng 1. Tìm hai số biết tổng (hoặc hiệu) và tỉ số của chúng. + Dạng 2. Chia một số thành các phần tỉ lệ với các số cho trước. + Dạng 3. Tìm hai số biết tích và tỉ số của chúng. + Dạng 4. Chứng minh đẳng thức từ một tỉ lệ thức cho trước. + Dạng 5. Thay tỉ số giữa các số hữu tỉ bằng tỉ số giữa các số nguyên. + Dạng 6. Tìm số hạng chưa biết trong một tỉ lệ thức. BÀI 9 . SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. + Dạng 1. Nhận biết một phân số viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn. + Dạng 2. Viết một tỉ số hoặc một phân số dưới dạng số thập phân. + Dạng 3. Viết số thập phân hữu hạn dưới dạng phân số tối giản. + Dạng 4. Viết số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản. BÀI 10 . LÀM TRÒN SỐ. + Dạng 1. Làm tròn các số theo một yêu cầu cho trước. + Dạng 2. Giải bài toán rồi làm tròn kết quả. + Dạng 3. Áp dụng quy ước làm tròn số để ước lượng kết quả các phép tính. BÀI 11 . SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI. + Dạng 1. Liên hệ giữa lũy thừa bậc hai và căn bậc hai. + Dạng 2. Tìm căn bậc hai của một số cho trước. + Dạng 3. Tìm một số biết căn bậc hai của nó. + Dạng 4. Sử dụng máy tính bỏ túi để tính căn bậc hai của một số cho trước. BÀI 12 . SỐ THỰC. + Dạng 1. Câu hỏi và bài tập về định nghĩa các tập hợp số. + Dạng 2. So sánh các số thực. + Dạng 3. Tìm số chưa biết trong một đẳng thức. + Dạng 4. Tìm giá trị của biểu thức. ÔN TẬP CHƯƠNG 1.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hai góc đối đỉnh
Nội dung Chuyên đề hai góc đối đỉnh Bản PDF - Nội dung bài viết Chuyên đề hai góc đối đỉnh Chuyên đề hai góc đối đỉnh Tài liệu này gồm 09 trang, cung cấp kiến thức về hai góc đối đỉnh, từ lý thuyết đến các dạng toán và bài tập thực hành. Được thiết kế để hỗ trợ học sinh lớp 7 trong quá trình học tập môn Toán, đặc biệt là phần Hình học chương 1 với tiêu chí mục tiêu sau: - Kiến thức: Học sinh sẽ có khả năng phát biểu đúng khái niệm hai góc đối đỉnh và nắm vững các tính chất cơ bản của chúng. - Kỹ năng: Học sinh sẽ được trang bị kỹ năng nhận biết hai góc đối đỉnh và áp dụng tính chất của chúng vào việc tính toán số đo góc. Bên cạnh đó, tài liệu cung cấp các dạng bài tập thực hành như: 1. Dạng 1: Nhận biết hai góc đối đỉnh. 2. Dạng 2: Tính toán số đo góc. 3. Dạng 3: Chứng minh tính chất hai góc đối đỉnh. Mỗi bài tập đều được kèm theo đáp án và lời giải chi tiết, giúp học sinh tự tin và hiểu rõ hơn về chủ đề này. Tài liệu được xây dựng theo cách trực quan, dễ hiểu, giúp học sinh tiếp cận môn Toán một cách chủ động và tích cực.
Chuyên đề nghiệm của đa thức một biến
Nội dung Chuyên đề nghiệm của đa thức một biến Bản PDF - Nội dung bài viết Tài liệu học chuyên đề nghiệm của đa thức một biếnLÝ THUYẾT TRỌNG TÂMCÁC DẠNG BÀI TẬP: Tài liệu học chuyên đề nghiệm của đa thức một biến Tài liệu này bao gồm 10 trang, cung cấp thông tin lý thuyết cơ bản, các dạng toán và bài tập liên quan đến chuyên đề nghiệm của đa thức một biến. Được thiết kế đặc biệt để hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán lớp 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu chính của tài liệu này là giúp học sinh: Nắm vững định nghĩa về nghiệm của đa thức một biến. Hiểu được số lượng nghiệm có thể của đa thức một biến không vượt quá bậc của đa thức. Kiểm tra một số có phải là nghiệm của đa thức một biến hay không. Tìm ra nghiệm của một số đa thức một biến dạng đơn giản. Biết cách chứng minh đa thức vô nghiệm. LÝ THUYẾT TRỌNG TÂM CÁC DẠNG BÀI TẬP: Dạng 1: Kiểm tra nghiệm của đa thức. Dạng 2: Tìm nghiệm của đa thức. Bên cạnh đó, tài liệu còn cung cấp các bài tập thực hành như: Tìm nghiệm của đa thức trong bài toán lớp 1. Chứng minh đa thức không có nghiệm trong bài toán lớp 2. Tìm đa thức một biến có nghiệm cho trước trong dạng bài tập 3. Tài liệu này sẽ giúp học sinh lớp 7 hiểu rõ hơn về chuyên đề nghiệm của đa thức một biến và rèn luyện kỹ năng giải bài tập một cách thành thạo.
Chuyên đề cộng, trừ đa thức một biến
Nội dung Chuyên đề cộng, trừ đa thức một biến Bản PDF - Nội dung bài viết Chuyên đề cộng, trừ đa thức một biến Chuyên đề cộng, trừ đa thức một biến Chuyên đề này bao gồm 08 trang tài liệu, tập trung vào lý thuyết cơ bản về cách cộng, trừ đa thức một biến. Bên cạnh đó, tài liệu cũng cung cấp các dạng toán và bài tập thực hành, kèm theo đáp án và lời giải chi tiết. Được thiết kế nhằm hỗ trợ học sinh lớp 7 trong quá trình học tập môn Toán, đặc biệt là phần Đại số chương 4: Biểu thức đại số. Mục tiêu của chuyên đề này là giúp học sinh: Hiểu và nắm vững cách cộng, trừ đa thức theo hàng ngang và theo hàng dọc. Thực hiện được cộng, trừ đa thức theo hàng ngang và theo hàng dọc. Phần lý thuyết trọng tâm của tài liệu giải thích các khái niệm cơ bản và phương pháp tính toán cộng, trừ đa thức một biến. Các dạng bài tập đa dạng giúp học sinh nắm vững kiến thức và có cơ hội luyện tập thêm. Đáp án và lời giải chi tiết giúp học sinh tự kiểm tra và tự ôn tập sau khi giải bài tập. Cụ thể, trong tài liệu sẽ gồm: Lí thuyết trọng tâm Các dạng bài tập, bao gồm: Dạng 1: Tính tổng hoặc hiệu của hai đa thức. Dạng 2: Tìm đa thức chưa biết trong một đẳng thức. Đây sẽ là tài liệu hữu ích giúp học sinh lớp 7 rèn luyện kiến thức và kỹ năng cộng, trừ đa thức một biến một cách hiệu quả.
Chuyên đề đa thức một biến
Nội dung Chuyên đề đa thức một biến Bản PDF - Nội dung bài viết Một cẩm nang đầy đủ về chuyên đề đa thức một biến Một cẩm nang đầy đủ về chuyên đề đa thức một biến Để giúp học sinh lớp 7 nắm vững kiến thức về đa thức một biến trong chương trình Toán lớp 7 phần Đại số chương 4: Biểu thức đại số, chúng tôi đã biên soạn một tài liệu gồm 10 trang với lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đa thức một biến. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập. Mục tiêu của tài liệu là giúp học sinh nắm vững khái niệm về đa thức một biến, bậc, hệ số của đa thức một biến. Kĩ năng sắp xếp và tìm các thông số của đa thức như bậc, hệ số cao nhất, hệ số tự do cũng được đề cập và thực hành trong các dạng bài tập. Trong tài liệu, học sinh sẽ được hướng dẫn cách thu gọn và sắp xếp các hạng tử của đa thức, xác định bậc và hệ số của đa thức, cũng như tính giá trị của đa thức thông qua các dạng bài tập cụ thể.