Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán có yếu tố max - min trong bài toán thể tích

Tài liệu gồm 33 trang, được biên soạn bởi thầy giáo Hoàng Xuân Bính (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT 2021 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn giải các dạng toán có yếu tố max – min trong bài toán thể tích khối đa diện (cực trị thể tích / GTLN – GTNN thể tích) – một dạng toán xuất hiện nhiều trong trong đề thi thử tốt nghiệp THPT môn Toán nhiều năm gần đây; đây cũng là dạng bài tập mà khiến nhiều học sinh gặp khó khăn về việc tiếp cận và tìm lời giải. 1. Lý thuyết a) Một số phương pháp chung để giải quyết các bài toán cực trị về thể tích: – Thông thường để giải quyết một bài toán cực trị về thể tích thì mục tiêu đầu tiên của chúng ta chính là thiết lập được các yếu tố cơ bản của công thức tính thể tích là tìm được chiều cao, diện tích đáy của khối chóp hoặc lăng trụ ấy. – Sau khi đã xác định được công thức của thể tích thì ta có thể sử dụng một trong ba phương pháp sau đây: + Phương pháp 1: Khảo sát hàm số một biến số. + Phương pháp 2: Sử dụng đánh giá bằng bất đẳng thức cổ điển: Cauchy, Cauchy Schwarz …. + Phương pháp 3: Có thể sử dụng đánh giá bằng hình học (ví dụ so sánh hình chiếu với hình xiên …). b) Một số kết quả thường được sử dụng trong các bài toán cực trị. c) Bất đẳng thức Cauchy. 2. Bài tập minh họa 2.1 Dạng 1: Các bài toán cực trị về tứ diện hoặc hình chóp tam giác. + Dạng 1: Tứ diện có 5 cạnh độ dài bằng nhau và 1 cạnh còn lại có dộ dài thay đổi hoặc tứ diện có 1 cặp cạnh chéo nhau có độ dài thay đổi và 4 cạnh còn lại có độ dài bằng nhau. + Dạng 2: Tứ diện có một cặp cạnh đối diện vuông góc với nhau hoặc có một cạnh bên chính là đoạn vuông góc chung của 1 cặp cạnh chéo nhau. + Dạng 3: Tứ diện có 1 đỉnh mà tại đỉnh đó độ dài 3 cạnh chung đỉnh không đổi và hai góc có số đo cố định, góc còn lại có số đo chưa xác định. + Dạng 4: Tứ diện được phân tích thành hai tứ diện nhỏ có chung mặt đáy và có 1 cạnh bên vuông góc với mặt đáy chung đó. + Dạng 5: Sử dụng tính chất đồng phẳng của 4 điểm. + Dạng 6: Tứ diện gần đều. 2.2 Các bài toán cực trị về hình chóp tứ giác. + Dạng 1: Hình chóp có các cạnh bên bằng nhau. + Dạng 2: Sử dụng tỉ số thể tích để xác định cực trị. + Dạng 3: Chóp có chiều cao không đổi. + Dạng 4: Các bài toán liên quan đến khoảng cách, góc. 2.3 Các bài toán cực trị về hình hộp. Trong dạng bài tập này thì cách thức để giải quyết bài toán vẫn tương tự như trong dạng bài toán cực trị về hình chóp. Từ giả thiết bài toán, ta xác định mối quan hệ của đường cao và diện tích đáy của hình hộp theo các đại lượng cho trước và thiết lập công thức tính thể tích về theo 1 đại lượng biến nào đó. Sau đó áp dụng bất đẳng thức Cauchy hoặc sử dụng phương pháp hàm số để xác định đáp số của bài toán. 2.4 Các bài toán thực tế. Với các bài toán thực tế liên quan đến cực trị thể tích của các khối đa diện thường dẫn đến yêu cầu xác định đúng được các điều kiện về chiều cao, diện tích đáy theo đại lượng biến cần tìm của bài toán. Sau đó dựa vào đánh giá bất đẳng thức Cauchy hoặc sử dụng phương pháp hàm số là sẽ giải quyết được bài toán. 3. Bài tập tự luyện Xem thêm : Bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ – logarit – Hoàng Xuân Bính (tài liệu cùng tác giả)

Nguồn: toanmath.com

Đọc Sách

Tổng hợp lý thuyết khối đa diện và thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 31 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và hướng dẫn giải các dạng bài tập chuyên đề khối đa diện và thể tích khối đa diện, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Hình học chương 1. MỤC LỤC : Chủ đề 01. HÌNH ĐA DIỆN – KHỐI ĐA DIỆN. Chủ đề 02. THỂ TÍCH KHỐI CHÓP. + Dạng 1.1. Chóp có cạnh bên vuông góc với đáy 9. + Dạng 1.2. Chóp có mặt bên vuông góc với đáy 10. + Dạng 1.3. Chóp đều 11. + Dạng 1.4. Tỷ số thể tích 13. + Dạng 1.5. Tổng hiệu thể tích 16. Chủ đề 03. THỂ TÍCH KHỐI LĂNG TRỤ. + Dạng 2.1. Thể tích lăng trụ đứng 19. + Dạng 2.2. Thể tích lăng trụ xiên 20. + Dạng 2.3. Thể tích khối lập phương – khối hộp 21. + Dạng 2.4. Khối đa diện được cắt ra từ khối lăng trụ 22. + Dạng 2.5. Max – min thể tích 25.
Một số bài toán liên quan đến tỷ số thể tích khối đa diện
Tài liệu gồm 45 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, hướng dẫn phương pháp giải một số bài toán liên quan đến tỷ số thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học. MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN TỶ SỐ THỂ TÍCH. Dạng 1 : Tỷ số liên quan đến diện tích đáy và đường cao. + Mức 1: Cho hình chóp S.ABC có thể tích là V. Gọi M là trung điểm BC. Thể tích khối chóp S.ABM bằng? + Mức 2: Cho hình chóp S.ABC có thể tích là V. Gọi M, N là trung điểm AB, AC. Thể tích khối chóp S.AMN bằng? + Mức 3: Cho hình chóp S.ABC có thể tích là V. Gọi M, N, P là trung điểm SA, AB, AC. Thể tích khối chóp M.ANP bằng? + Mức 4: Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi V là thể tích khối chóp S.ABCD. Thể tích khối chóp S.ABO bằng? + Mức 5: Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi V là thể tích khối chóp S.ABCD. M là trung điểm SA. Thể tích khối chóp M.ABO bằng? Dạng 2 : Tỷ số thể tích khối chóp tam giác. + Mức 1: Cho hình chóp S.ABC có thể tích là V. Gọi M, N, P lần lượt là trung điểm SA, SB, SC. Thể tích khối chóp S.MNP bằng? + Mức 2: Cho hình chóp S.ABC có thể tích là V. Gọi M, N, P lần lượt là trung điểm SA, SB, SC. Thể tích khối đa diện MNPCBA bằng? + Mức 3: Cho hình chóp S.ABC có thể tích là V. Gọi M, N lần lượt là trung điểm SB, SC. Thể tích khối chóp S.AMN bằng? + Mức 4: Cho hình chóp S.ABC có thể tích là V. Gọi M, N lần lượt là trung điểm SB, SC. Thể tích khối chóp A.MNCB bằng? Dạng 3 : Tỷ số thể tích khối chóp tứ giác. + Mức 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi V là thể tích khối chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm SA, SB, SC, SD. Thể tích khối chóp S.MNPQ bằng? + Mức 2: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi V là thể tích khối chóp S.ABCD. Gọi M, N lần lượt là trung điểm SA, SB. Thể tích khối chóp S.MNCD bằng? Dạng 4 : Tỷ số thể tích khối lăng trụ. + Mức 1: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Thể tích khối chóp A’.ABC bằng? + Mức 2: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Thể tích khối chóp A’.B’C’CB bằng? + Mức 3: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Gọi M, N lần lượt là trung điểm BB’, CC’. Thể tích khối chóp A’.B’C’NM bằng? + Mức 4: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Gọi M, N, P lần lượt là trung điểm AA’, BB’, CC’. Thể tích khối A’B’C’. MNP bằng? + Mức 5: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Gọi M là trung điểm BB’. Thể tích khối chóp M.A’B’C’ bằng? + Mức 6: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Thể tích khối chóp A’.ABC bằng? + Mức 7: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Thể tích khối tứ diện BDA’C’ bằng? + Mức 8: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Gọi M, N, P, Q lần lượt là trung điểm AA’, BB’, CC’, DD’. Thể tích khối đa diện A’B’C’D’.QMNP bằng? + Mức 9: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Gọi M, N lần lượt là trung điểm AA’, BB’. Thể tích khối đa diện A’B’NMDCC’D’ bằng? Dạng 5 : Một số bài toán khác. + Mức 1: Cho tam giác ABC đều có cạnh bằng a. Dựng AA’, BB’, CC, vuông góc với (ABC) sao cho AA’ = 3a, BM = CN = a. Thể tích khối đa diện A’ABCNM bằng? + Mức 2: Cho tam giác ABC đều có cạnh bằng a. Dựng AA’, BB’, CC’ vuông góc với (ABC) sao cho AA’ = 4a, BM = 2a, CN = 4a/3. Thể tích khối đa diện A’ABCNM bằng? BÀI TẬP RÈN LUYỆN. LỜI GIẢI CHI TIẾT.
Tài liệu chuyên đề khối đa diện và thể tích khối đa diện
Tài liệu gồm 443 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề khối đa diện và thể tích khối đa diện, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 1 . KHỐI ĐA DIỆN. I LÝ THUYẾT. II HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. BÀI 2 . KHỐI ĐA DIỆN LỒI – KHỐI ĐA DIỆN ĐỀU. I LÝ THUYẾT. II HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. III BÀI TẬP TRẮC NGHIỆM TỔNG HỢP. BÀI 3 . THỂ TÍCH KHỐI ĐA DIỆN. I LÝ THUYẾT. II HỆ THỐNG BÀI TẬP TỰ LUẬN. Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. + Loại 1. Tính bằng công thức. + Loại 2. Tính thể tích khối chóp có cạnh bên vuông góc với đáy khi biết góc giữa đường thẳng và mặt phẳng. + Loại 3. Tính thể tích khối chóp có cạnh bên vuông góc đáy khi biết góc giữa hai mặt phẳng. + Loại 4. Tính thể tích khối chóp có cạnh bên vuông góc với đáy khi biết khoảng cách từ một điểm đến một mặt phẳng. Dạng 2. Thể tích khối chóp có hình chiếu của đỉnh là các điểm đặc biệt trên mặt đáy (không trùng với các đỉnh của đa giác đáy). + Trường hợp 1. Hình chiếu của đỉnh trên mặt đáy nằm trên cạnh của đa giác đáy (một mặt bên của hình chóp vuông góc với mặt đáy). + Trường hợp 2. Hình chiếu của đỉnh trên mặt đáy nằm ở miền trong của đa giác đáy. + Trường hợp 3. Hình chiếu của đỉnh trên mặt đáy nằm ở miền ngoài của đa giác đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Thể tích khối lăng trụ đứng – đều. Dạng 5. Thể tích khối lăng trụ xiên. + Loại 1. Tính thể tích lăng trụ xiên bằng cách xác định chiều cao và diện tích đáy. + Loại 2. Tính thể tích lăng trụ xiên khi biết các yếu tố góc, khoảng cách. + Loại 3. Tính thể tích lăng trụ (tam giác) gián tiếp qua thể tích khối chóp. Dạng 6. Thể tích các khối đa diện khác. Dạng 7. Các bài toán ứng dụng thể tích tính diện tích, khoảng cách. + Dạng 7.1. Ứng dụng thể tích tính khoảng cách từ điểm đến mặt phẳng. + Dạng 7.2. Ứng dụng thể tích tính khoảng cách giữa hai đường thẳng chéo nhau. Dạng 8. Các bài toán về tỉ số thể tích. + Dạng 8.1. Thể tích khối chóp. + Dạng 8.2. Thể tích khối lăng trụ. III HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Các dạng bài tập trắc nghiệm. THỂ TÍCH KHỐI CHÓP. Dạng 1. Cạnh bên vuông góc với đáy. Dạng 2. Mặt bên vuông góc với đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Cạnh bên vuông góc với đáy. Dạng 5. Mặt bên vuông góc với đáy. Dạng 6. Thể tích khối chóp đều. Dạng 7. Thể tích khối chóp khác. THỂ TÍCH KHỐI LĂNG TRỤ. Dạng 1. Thể tích khối lăng trụ đứng. Dạng 2. Thể tích khối lăng trụ xiên. TỈ SỐ THỂ TÍCH. Dạng 1. Tỉ số thể tích khối chóp tam giác. Dạng 2. Tỉ số khối lăng trụ.
Một số dạng toán liên quan đến thể tích khối lăng trụ
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, hướng dẫn giải một số dạng toán liên quan đến thể tích khối lăng trụ trong chuyên đề thể tích khối đa diện môn Toán 12. Dạng 1 : Khối lăng trụ có cạnh bên vuông góc với đáy. Phương pháp: Cho hình lăng trụ đứng ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABC. Dạng 2 : Khối lăng trụ đều. Phương pháp: Cho hình lăng trụ tam giác đều ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABC. Phương pháp: Cho hình lăng trụ tứ giác đều ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABCD. Dạng 3 : Khối hộp chữ nhật – Khối lập phương. Phương pháp: Cho hình hộp chữ nhật ABCD A B C D. Thể tích khối hộp: V abc. Phương pháp: Cho hình lập phương ABCD A B C D. + Thể tích khối lập phương: 3 V a. Dạng 4 : Khối lăng trụ xiên bất kì. Phương pháp: Cho hình lăng trụ ABC A B C. + Đường cao: AH H là hình chiếu vuông góc của A trên ABC. + Thể tích khối lăng trụ: V AH SABC.