Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán có yếu tố max - min trong bài toán thể tích

Tài liệu gồm 33 trang, được biên soạn bởi thầy giáo Hoàng Xuân Bính (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT 2021 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn giải các dạng toán có yếu tố max – min trong bài toán thể tích khối đa diện (cực trị thể tích / GTLN – GTNN thể tích) – một dạng toán xuất hiện nhiều trong trong đề thi thử tốt nghiệp THPT môn Toán nhiều năm gần đây; đây cũng là dạng bài tập mà khiến nhiều học sinh gặp khó khăn về việc tiếp cận và tìm lời giải. 1. Lý thuyết a) Một số phương pháp chung để giải quyết các bài toán cực trị về thể tích: – Thông thường để giải quyết một bài toán cực trị về thể tích thì mục tiêu đầu tiên của chúng ta chính là thiết lập được các yếu tố cơ bản của công thức tính thể tích là tìm được chiều cao, diện tích đáy của khối chóp hoặc lăng trụ ấy. – Sau khi đã xác định được công thức của thể tích thì ta có thể sử dụng một trong ba phương pháp sau đây: + Phương pháp 1: Khảo sát hàm số một biến số. + Phương pháp 2: Sử dụng đánh giá bằng bất đẳng thức cổ điển: Cauchy, Cauchy Schwarz …. + Phương pháp 3: Có thể sử dụng đánh giá bằng hình học (ví dụ so sánh hình chiếu với hình xiên …). b) Một số kết quả thường được sử dụng trong các bài toán cực trị. c) Bất đẳng thức Cauchy. 2. Bài tập minh họa 2.1 Dạng 1: Các bài toán cực trị về tứ diện hoặc hình chóp tam giác. + Dạng 1: Tứ diện có 5 cạnh độ dài bằng nhau và 1 cạnh còn lại có dộ dài thay đổi hoặc tứ diện có 1 cặp cạnh chéo nhau có độ dài thay đổi và 4 cạnh còn lại có độ dài bằng nhau. + Dạng 2: Tứ diện có một cặp cạnh đối diện vuông góc với nhau hoặc có một cạnh bên chính là đoạn vuông góc chung của 1 cặp cạnh chéo nhau. + Dạng 3: Tứ diện có 1 đỉnh mà tại đỉnh đó độ dài 3 cạnh chung đỉnh không đổi và hai góc có số đo cố định, góc còn lại có số đo chưa xác định. + Dạng 4: Tứ diện được phân tích thành hai tứ diện nhỏ có chung mặt đáy và có 1 cạnh bên vuông góc với mặt đáy chung đó. + Dạng 5: Sử dụng tính chất đồng phẳng của 4 điểm. + Dạng 6: Tứ diện gần đều. 2.2 Các bài toán cực trị về hình chóp tứ giác. + Dạng 1: Hình chóp có các cạnh bên bằng nhau. + Dạng 2: Sử dụng tỉ số thể tích để xác định cực trị. + Dạng 3: Chóp có chiều cao không đổi. + Dạng 4: Các bài toán liên quan đến khoảng cách, góc. 2.3 Các bài toán cực trị về hình hộp. Trong dạng bài tập này thì cách thức để giải quyết bài toán vẫn tương tự như trong dạng bài toán cực trị về hình chóp. Từ giả thiết bài toán, ta xác định mối quan hệ của đường cao và diện tích đáy của hình hộp theo các đại lượng cho trước và thiết lập công thức tính thể tích về theo 1 đại lượng biến nào đó. Sau đó áp dụng bất đẳng thức Cauchy hoặc sử dụng phương pháp hàm số để xác định đáp số của bài toán. 2.4 Các bài toán thực tế. Với các bài toán thực tế liên quan đến cực trị thể tích của các khối đa diện thường dẫn đến yêu cầu xác định đúng được các điều kiện về chiều cao, diện tích đáy theo đại lượng biến cần tìm của bài toán. Sau đó dựa vào đánh giá bất đẳng thức Cauchy hoặc sử dụng phương pháp hàm số là sẽ giải quyết được bài toán. 3. Bài tập tự luyện Xem thêm : Bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ – logarit – Hoàng Xuân Bính (tài liệu cùng tác giả)

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm nâng cao khối đa diện - Đặng Việt Đông
Tài liệu gồm 125 trang được biên soạn bởi thầy Đặng Việt Đông tuyển tập các bài toán trắc nghiệm nâng cao khối đa diện có đáp án và lời giải chi tiết, nhằm giúp các em học sinh khối 12 luyện đạt điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán, các bài toán được trích dẫn từ các đề thi thử môn Toán của các trường THPT và cơ sở GD & ĐT trên toàn quốc. Xem thêm : + Trắc nghiệm nâng cao nón – trụ – cầu – Đặng Việt Đông + Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông
Kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian - Hà Duy Nghĩa
Tài liệu sáng kiến kinh nghiệm được biên soạn bởi thầy Hà Duy Nghĩa gồm 20 trang, trình bày một số kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian. Tài liệu trình bày các vấn đề : + Bài toán liên quan đến thể tích khối đa diện: Trình bày một số kỹ thuật tính thể tích thông qua việc phân chia các thể tích cũng như tính tỉ số thể tích trực tiếp, gián tiếp và những ưu khuyết điểm của nó. + Bài toán liên quan đến tâm, bán kính mặt cầu ngoại tiếp hình đa diện: Trình bày về vấn đề hay gặp là tìm bán kính mặt cầu ngoại tiếp khối chóp và lăng trụ còn về tâm mặt cầu thì chỉ đề cập. + Bài toán liên quan đến hình tròn xoay: Trình bày một số bài toán liên quan đến thể tích các vật thể tròn xoay trong thực tế, các dạng bài tập tương tự như các bài trong đề thi minh họa và đề thử nghiệm.
Tài liệu chuyên Toán THPT chuyên đề Hình học không gian
Cuốn sách Tài liệu chuyên Toán THPT chuyên đề Hình học không gian gồm 160 trang được biên soạn bởi các tác giả Trần Đức Huyên, Nguyễn Duy Hiếu (trường THPT chuyên Lê Hồng Phong – TP. HCM nhằm giúp các em học sinh khối 11 – 12 cải thiện và nâng cao kỹ năng giải toán Hình học không gian và hướng đến kỳ thi THPTQG. Nội dung sách : Phần 1. Lý thuyết và phương pháp giải toán Chương 1. Hình lăng trụ Chương 2. Hình hộp Chương 3. Hình chóp Chương 4. Hình cầu Chương 5. Hình trụ Chương 6. Hình nón Chương 7. Các bài toán về khoảng cách Chương 8. Các bài toán về góc Phần 2. Ứng dụng để giải các đề tuyển sinh đại học [ads] Xem thêm : + Tài liệu chuyên Toán – Hình học 11 + Giải toán 12 nguyên hàm – tích phân – Trần Đức Huyên (Tài liệu cùng tác giả)
Ôn luyện bồi dưỡng học sinh giỏi hình học không gian - Phan Huy Khải
Nhằm giúp các em học sinh THPT nói chung, các bạn học sinh giỏi Toán nói riêng có thêm tài liệu rèn luyện bồi dưỡng chuyên đề hình học không gian để phục vụ cho kỳ thi THPT Quốc gia và các kỳ thi học sinh giỏi Toán, giới thiệu cuốn sách Ôn luyện bồi dưỡng học sinh giỏi hình học không gian (287 trang). Sách được biên soạn bởi các tác giả: Phan Huy Khải (Chủ biên), Chử Xuân Dũng, Hoàng Văn Phủ, Cù Phượng Anh. Nội dung sách : Chương 1 . Đường thẳng và mặt phẳng trong không gian. Quan hệ song song + Các bài toán đại cương về đường thẳng và mặt phẳng + Các bài toán về thiết diện + Các bài toán về tính song song của đường thẳng và mặt phẳng Chương 2 . Quan hệ vuông góc Các bài toán về khoảng cách + Khoảng cách từ một điểm tới một đường thẳng, hoặc từ một điểm tới mặt phẳng + Khoảng cách giữa hai đường thẳng chéo nhau Các bài toán về góc trong không gian + Bài toán về góc giữa hai đường thẳng chéo nhau + Bài toán về góc giữa đường thẳng và mặt phẳng và góc giữa hai mặt phẳng Sử dụng phương pháp tọa độ để giải các bài toán về khoảng cách và góc trong không gian Thể tích của khối đa diện + Tính thể tích bằng cách sử dụng trực tiếp các công thức về thể tích + Tính thể tích bằng cách sử dụng thể tích của các khối đa diện khác + Bài toán so sánh thể tích + Các bài toán liên quan đến thể tích + Sử dụng phương pháp thể tích để tìm khoảng cách Các bài toán về quan hệ vuông góc + Các bài toán chọn lọc về quan hệ vuông góc + Các bài toán chứng minh tính vuông góc trong các đề thi tuyển sinh môn Toán + Các bài toán về thiết diện liên quan đến tính vuông góc [ads] Chương 3 . Khối tròn xoay Hình cầu + Các bài toán chọn lọc về hình cầu + Nhìn lại các bài toán về hình cầu trong các đề thi tuyển sinh vào đại học cao đẳng Hình trụ, hình nón + Các dạng toán cơ bản + Các bài toán phối hợp giữa hình trụ, hình nón với hình cầu và các khối đa diện Chương 4 . Một số chuyên đề đặc biệt + Hình tứ diện: Tứ diện vuông, Tứ diện trực tâm, Tứ diện gần đều + Các bài toán quỹ tích trong hình học không gian