Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 1 Giải tích)

Tài liệu gồm 153 trang tuyển tập lý thuyết, phân dạng toán và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Giải tích ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. CHUYÊN ĐỀ 1 . ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ §1. SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho + Dạng 2. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó + Dạng 3. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (α; β) §2. CỰC TRỊ CỦA HÀM SỐ + Dạng 1. Tìm các điểm cực trị của hàm số y = f(x) + Dạng 2. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0 + Dạng 3. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán §3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ + Dạng 1. Tìm GTLN – GTNN của hàm số trên đoạn [a; b]. Xét hàm số y = f(x) + Dạng 2. Tìm GTLN – GTNN của hàm số chứa căn thức + Dạng 3. Tìm GTLN – GTNN của hàm số trên một khoảng (a; b) + Dạng 4. Ứng dụng vào bài toán thực tế §4. ĐƯỜNG TIỆM CẬN + Dạng 1: Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên + Dạng 2: Tìm các đường tiệm cận của hàm số nhất biến + Dạng 3: Tìm các đường tiệm đứng của hàm số khác §5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ §6. MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ + Dạng 1. Biện luận số giao điểm của hai đồ thị + Dạng 2. Biện luận số nghiệm của phương trình bằng đồ thị + Dạng 3. Viết phương trình tiếp tuyến + Dạng 4. Sự tiếp xúc của các đường cong [ads] CHUYÊN ĐỀ 2 . HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LÔGARIT. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ – LÔGARIT + Dạng 1. Xét tính đúng sai của một mệnh đề + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit + Dạng 5. Tập xác định của hàm số + Dạng 6. Tính đạo hàm + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế CHUYÊN ĐỀ 3 . NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ 4 . SỐ PHỨC 1. Số phức 2. Các phép toán trên số phức 3. Mối liên hệ giữa z và z‾ 4. Phương trình bậc hai với hệ số thực 5. Cực trị số phức 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z| + Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R, R > 0. Tìm giá trị nhỏ nhất, lớn nhất của z + Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1, r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2| + Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k, k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z| + Dạng 4. Cho hai số phức z1, z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2| Xem thêm :  Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp

Nguồn: toanmath.com

Đọc Sách

Phương pháp chọn đại diện giải toán trắc nghiệm Trần Tuấn Anh
Nội dung Phương pháp chọn đại diện giải toán trắc nghiệm Trần Tuấn Anh Bản PDF - Nội dung bài viết Tài liệu hướng dẫn phương pháp chọn đại diện giải toán trắc nghiệm Trần Tuấn Anh Tài liệu hướng dẫn phương pháp chọn đại diện giải toán trắc nghiệm Trần Tuấn Anh Tài liệu này bao gồm 36 trang và được biên soạn bởi thầy giáo Trần Tuấn Anh. Nó hướng dẫn cách chọn đại diện để giải các bài toán trắc nghiệm trong chương trình Toán lớp 12, nhằm giúp học sinh ôn thi THPT Quốc gia môn Toán. Các bài toán được chọn lọc cẩn thận từ các nguồn đáng tin cậy để đảm bảo tính chất học thuật và giúp học sinh nắm vững kiến thức cần thiết.
Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu Bản PDF - Nội dung bài viết Trường học mở cửa trở lại sau thời gian nghỉ kéo dài Trường học mở cửa trở lại sau thời gian nghỉ kéo dài Sau thời gian nghỉ học kéo dài do ảnh hưởng của dịch bệnh, các trường THPT trên khắp cả nước đã bắt đầu cho học sinh quay trở lại trường. Đây là lúc các học sinh lớp 12 cần tự ôn tập để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học trong năm học 2019 – 2020. Dịch bệnh đã gây ra nhiều thách thức cho hệ thống giáo dục, khiến cho việc học tập trở nên hiệu quả hơn. Vì vậy, việc ôn tập kiến thức từ trước thành ra cực kỳ quan trọng, giúp học sinh tự tin hơn khi tham gia vào các kỳ thi quan trọng. Các em học sinh cũng nên lập kế hoạch ôn tập hợp lý, chia đều thời gian và tập trung vào những môn học mình yếu để nâng cao điểm số. Hơn nữa, việc tham gia vào các bài tập trắc nghiệm bài toán tối ưu cũng là một phương pháp hiệu quả giúp củng cố kiến thức và rèn luyện kỹ năng giải quyết vấn đề cho học sinh. Chúc các em học sinh lớp 12 có một kỳ thi thành công và đạt kết quả cao trong năm học này!
Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế Bản PDF - Nội dung bài viết Khái quát kiến thức về lãi suất ngân hàng và bài toán tăng trưởng dân sốI. Các dạng toán về lãi suất ngân hàngII. Bài toán tăng trưởng dân sốBài tập trắc nghiệm và đáp án Khái quát kiến thức về lãi suất ngân hàng và bài toán tăng trưởng dân số Trong phần này, chúng ta sẽ tóm tắt những kiến thức cơ bản về lãi suất ngân hàng và bài toán tăng trưởng dân số. I. Các dạng toán về lãi suất ngân hàng 1. Lãi đơn: Được tính dựa trên số tiền gửi và tỷ lệ lãi suất cố định. 2. Lãi kép: Là lãi được tính trên số tiền gửi cũ và lãi cũ. 3. Lãi kép liên tục: Là lãi được tính trên số tiền gửi ban đầu và lãi được cộng dồn liên tục. 4. Công thức tính tiền gửi hàng tháng cho vay: cho thuê nhà, cho thuê xe, etc. 5. Công thức tính tiền gửi ngân hàng và rút tiền gửi hàng tháng. 6. Công thức tính tiền vay vốn trả góp: Cần tính số tiền phải trả mỗi tháng. 7. Công thức tính tăng lương: Tính lương theo tỷ lệ tăng hàng năm. II. Bài toán tăng trưởng dân số Đây là bài toán liên quan đến việc dự đoán tăng trưởng dân số trong tương lai dựa trên các yếu tố như tỷ lệ sinh, tỷ lệ chết, và tỷ lệ nhập cư. Bài tập trắc nghiệm và đáp án Trong phần này, chúng ta sẽ cùng giải những bài tập trắc nghiệm liên quan đến lãi suất ngân hàng và bài toán tăng trưởng dân số. Các đáp án và hướng dẫn giải cũng được cung cấp để giúp bạn hiểu rõ hơn về chủ đề này.
Phương pháp hàm số đặc trưng Nguyễn Văn Rin
Nội dung Phương pháp hàm số đặc trưng Nguyễn Văn Rin Bản PDF - Nội dung bài viết Phương pháp hàm số đặc trưng của Nguyễn Văn Rin Phương pháp hàm số đặc trưng của Nguyễn Văn Rin Tài liệu này bao gồm 43 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Văn Rin. Trong tài liệu, thầy Rin trình bày cơ sở lý thuyết và giới thiệu một số ví dụ cụ thể áp dụng phương pháp hàm số đặc trưng trong các trường hợp khác nhau. Việc này giúp sinh viên hiểu rõ hơn về cách áp dụng phương pháp này trong thực tế và nâng cao kỹ năng giải quyết vấn đề của họ.