Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPTQG 2019 – 2020 lớp 10 môn Toán lần 1 trường Ngô Sĩ Liên – Bắc Giang

Nội dung Đề thi thử THPTQG 2019 – 2020 lớp 10 môn Toán lần 1 trường Ngô Sĩ Liên – Bắc Giang Bản PDF Nhằm giúp các em học sinh khối 10 sớm tiếp cận và rèn luyện kiến thức để hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, trường THPT Ngô Sĩ Liên – Bắc Giang tổ chức kỳ thi thử THPT Quốc gia lần 1 năm học 2019 – 2020 môn Toán lớp 10. Đề thi thử THPTQG 2019 – 2020 Toán lớp 10 lần 1 trường THPT Ngô Sĩ Liên – Bắc Giang mã đề 896, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề nhằm kiểm tra kiến thức Toán lớp 10 đã học, đề thi có đáp án. Trích dẫn đề thi thử THPTQG 2019 – 2020 Toán lớp 10 lần 1 trường Ngô Sĩ Liên – Bắc Giang : + Cho tứ giác ABCD cố định và điểm M di chuyển thỏa mãn |MA + MB + MC| = |MB + MC + MD|. Tập hợp điểm M là: A. đường trung trực của đoạn GG’, với G, G’ lần lượt là trọng tâm tam giác ABC, tam giác BCD. B. đường tròn tâm G, với G là trọng tâm tam giác ABC. C. đường tròn tâm G, với G là trọng tâm tam giác BCD. D. đường trung trực của đoạn GG’, với G, G’ lần lượt là trọng tâm tam giác ABC, tam giác ACD. [ads] + Hai tổ của một lớp 10 có 21 học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn, trong đó có 14 học sinh học giỏi môn Toán, 12 học sinh học giỏi môn Văn. Khi đó hai tổ trên có số học sinh học giỏi cả hai môn Toán và Văn là? + Cho hàm số y = -2x^2 + 8x – 2 có đồ thị là (P). Chọn khẳng định sai? A. (P) đi qua điểm M(-1;-12). B. Giá trị lớn nhất của hàm số bằng 2. C. Trục đối xứng của (P) là đường thẳng x = 2. D. (P) nghịch biến trên (2;+∞). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra lần 2 Toán 10 năm 2023 - 2024 trường THPT Tĩnh Gia 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng lần 2 môn Toán 10 năm học 2023 – 2024 trường THPT Tĩnh Gia 1, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra lần 2 Toán 10 năm 2023 – 2024 trường THPT Tĩnh Gia 1 – Thanh Hóa : + Một nhóm học tập có 10 học sinh trong đó có 6 nam và 4 nữ. a) Số cách chọn một học đi dự đại hội là 10. b) Số cách chọn hai học sinh đi dự đại hội là 45. c) Số cách chọn 3 học sinh trong đó có cả nam và nữ là 95. d) Số cách xếp 10 học sinh thành một hàng sao cho các học sinh nữ luôn xếp gần nhau 120960. + Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB = 40m, CAB CBA 45 70. Khoảng cách AC bằng bao nhiêu? (kết quả làm tròn đến hàng phần mười). + Một gia đình định trồng đậu và cà trên diện tích 8ha. Nếu trồng đậu thì cần 20 công và thu về 3 triệu đồng trên diện tích mỗi ha, nếu trồng cà thì cần 30 công và thu về 4 triệu đồng trên diện tích mỗi ha. Gọi x y lần lượt là diện tích trồng đậu và cà để thu được nhiều tiền nhất. Biết tổng số công không vượt quá 180. Khi đó 2 2 x y bằng bao nhiêu?
Đề khảo sát lần 2 Toán 10 năm 2023 - 2024 trường THPT Kẻ Sặt - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 2 môn Toán 10 năm học 2023 – 2024 trường THPT Kẻ Sặt, tỉnh Hải Dương. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát lần 2 Toán 10 năm 2023 – 2024 trường THPT Kẻ Sặt – Hải Dương : + Một cửa hàng bán bưởi Đoan Hùng với giá nhập ban đầu là 35000 đồng một quả. Qua thống kê chủ cửa hàng nhận thấy nếu cửa hàng bán với giá 60000 đồng một quả thì mỗi ngày cửa hàng chỉ bán được 30 quả. Nhưng nếu cửa hàng giảm giá bán mỗi quả 1000 đồng thì số bưởi bán được một ngày lại tăng 10 quả. Xác định giá bán (đơn vị nghìn đồng) để cửa hàng thu được lợi nhuận cao nhất. + Trong mặt phẳng tọa độ (Oxy), cho điểm M (1;-2) và đường thẳng dx y 2 4 3 0. Đường thẳng ∆ đi qua M và song song d có phương trình ax by a b 5 0. Tính giá trị biểu thức 2 2 a b ab 10. + Có bao nhiêu giá trị nguyên của tham số m để bất phương trình 2 x mx m 2 30 nghiệm đúng với mọi x.