Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG trường lớp 12 môn Toán năm 2022 2023 trường chuyên Phan Bội Châu Nghệ An

Nội dung Đề chọn HSG trường lớp 12 môn Toán năm 2022 2023 trường chuyên Phan Bội Châu Nghệ An Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 12 năm học 2022 – 2023 trường THPT chuyên Phan Bội Châu, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn Đề chọn HSG trường Toán lớp 12 năm 2022 – 2023 trường chuyên Phan Bội Châu – Nghệ An : + Có tám người ngồi quanh một bàn tròn. Mỗi người có một đồng xu đồng chất. Cả tám người cùng tung đồng xu của mình. Ai tung được mặt ngửa thì đứng dậy, còn ai tung được mặt sấp thì vẫn ngồi yên. Tính xác suất để không có hai người đứng cạnh nhau. + Cho hình chóp S ABC. Trên các cạnh SA SB SC lần lượt lấy các điểm D E F (khác S). Gọi M là điểm chung của ba mặt phẳng ABF BCD CAE. Đường thẳng SM lần lượt cắt các mặt phẳng (ABC) và (DEF) tại P và N. Chứng minh rằng 3 NP MP NS MS. + Cho hình lăng trụ ABC A B C có đáy là tam giác đều cạnh bằng 3 a cạnh bên bằng 2 a hình chiếu vuông góc của A’ lên mặt phẳng ABC thuộc cạnh AB và góc giữa mặt phẳng A ACC và đáy bằng arctan 2. a) Tính theo a thể tích khối lăng trụ ABC A B C. b) Gọi G là trọng tâm tam giác ABC. Tính sin của góc giữa đường thẳng AG’ và mặt phẳng.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra đội tuyển HSG Toán năm 2021 - 2022 trường chuyên Vị Thanh - Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng đội tuyển học sinh giỏi môn Toán THPT năm học 2021 – 2022 trường THPT chuyên Vị Thanh, tỉnh Hậu Giang; kỳ thi được diễn ra vào ngày 01 tháng 03 năm 2022; đề thi có đáp án và thang điểm. Trích dẫn đề kiểm tra đội tuyển HSG Toán năm 2021 – 2022 trường chuyên Vị Thanh – Hậu Giang : + Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm chia hết cho 10? + Trong mặt phẳng Oxy, biết một cạnh tam giác có trung điểm là M 1 1; hai cạnh kia nằm trên các đường thẳng 2 6 30 x y và x t 2 t y t. Hãy viết phương trình tham số của cạnh thứ ba của tam giác đó? + Cho hình chóp S ABCD có đáy là hình chữ nhật với AD a 3 AB 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SD và mặt phẳng ABCD bằng 0 45. Tính khoảng cách giữa hai đường thẳng SD và BC.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra trong hai ngày 24 và 25 tháng 11 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề chọn học sinh giỏi thành phố Toán 12 năm 2021 - 2022 sở GDĐT Hải Phòng
Thứ Ba ngày 18 tháng 01 năm 2022, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi cấp thành phố lớp 12 môn Toán năm học 2021 – 2022. Đề chọn học sinh giỏi thành phố Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng gồm 01 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn học sinh giỏi thành phố Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Có 15 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định). Chọn ra 4 người trong hàng. Tính xác suất để 4 người được chọn không có hai người nào đứng cạnh nhau. + Cho hình lăng trụ đứng ABCD A B C D có đáy ABCD là hình thang cân, AD song song với BC, AB BC CD a AD a 2. Góc giữa hai mặt phẳng ACD và ABCD bằng 0 45. a) Tính khoảng cách từ B đến mặt phẳng A CD. b) Gọi P là mặt phẳng đi qua B và vuông góc với đường thẳng A C. Mặt phẳng P chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích khối đa diện chứa đỉnh A. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC không có góc nào tù, nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong của góc A D BC. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C biết rằng A có tung độ âm và 1 5 0 1 1 0 2 B I E.
Đề lập đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Bình Phước
Đề lập đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Bình Phước gồm 02 trang với 07 bài toán dạng tự luận, kỳ thi được diễn ra trong hai ngày: 03/01/2022 và 04/01/2022.