Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối HK1 Toán 10 năm 2021 - 2022 trường chuyên Nguyễn Tất Thành - Kon Tum

Ngày … tháng 12 năm 2021, trường THPT chuyên Nguyễn Tất Thành, tỉnh Kon Tum tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 1 năm học 2021 – 2022. Đề cuối HK1 Toán 10 năm 2021 – 2022 trường chuyên Nguyễn Tất Thành – Kon Tum được biên soạn theo hình thức đề thi 70% trắc nghiệm + 30% tự luận (theo điểm số), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án trắc nghiệm và hướng dẫn giải tự luận Mã đề: 101 Mã đề: 102 Mã đề: 103 Mã đề: 104. Trích dẫn đề cuối HK1 Toán 10 năm 2021 – 2022 trường chuyên Nguyễn Tất Thành – Kon Tum : + Điều kiện cần và đủ để hai vectơ bằng nhau là: A. Hai vectơ cùng hướng. B. Hai vectơ ngược hướng và cùng độ dài. C. Hai vectơ cùng độ dài. D. Hai vectơ cùng hướng và cùng độ dài. + Trong các mệnh đề dưới đây, mệnh đề nào đúng? A. Đồ thị của hàm số lẻ nhận trục Ox làm trục đối xứng. B. Đồ thị của hàm số lẻ nhận trục Oy làm trục đối xứng. C. Đồ thị của hàm số lẻ không có trục đối xứng và không có tâm đối xứng. D. Đồ thị của hàm số lẻ nhận gốc tọa độ làm tâm đối xứng. + Cho vectơ u có độ dài bằng 3. Mệnh đề nào sau đây là đúng? A. Vectơ 2u có độ dài bằng 6 và cùng hướng với vectơ u. B. Vectơ 2u có độ dài bằng 6 và ngược hướng với vectơ u. C. Vectơ 2u có độ dài bằng 6 và cùng hướng với vectơ u. D. Vectơ 2u có độ dài bằng 6 và ngược hướng với vectơ u. + Cho 2 tập hợp A x x 1 0 và B x x 2 6. Hãy xác định và biểu diễn các tập hợp sau trên trục số A B A B C A. + Trong mặt phẳng tọa độ Oxy cho A C 2 3 0 1. Gọi N là điểm thuộc đoạn AC thỏa mãn AN NC 2. Tìm tọa độ điểm N.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM Bản PDF Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 10 năm học 2020 – 2021. Đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC biết A(2;1), B(1;2), C(4;3). a) Chứng minh ABC là tam giác vuông cân. b) Tìm giao điểm của đường thẳng AB và trục tung. c) Tìm tọa độ điểm D sao cho ABCD là hình thang có AD // BC và diện tích ABCD bằng 15. + Cho hình vuông ABCD cạnh a, gọi I là giao điểm của AC và BD. M là điểm thỏa MA2 + MB2 + MC2 + MD2 = 12a2, tính MI. + Cho phương trình (2x^2 – 8x + m)/(x^2 – 4x + 3) = 1. Tìm tất cả các giá trị của tham số m để phương trình có nghiệm.
Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I lớp 10 môn Toán
Nội dung Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I lớp 10 môn Toán Bản PDF Tài liệu gồm 48 trang được biên soạn bởi thầy Lương Tuấn Đức (Facebook: Giang Sơn) tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I môn Toán lớp 10, giúp học sinh ôn tập để chuẩn bị cho kỳ thi HK1 Toán lớp 10 tại trường. Các đề thi được biên soạn theo dạng đề trắc nghiệm, mỗi đề gồm 50 câu, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn tài liệu tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I môn Toán lớp 10: + Tìm mệnh đề đúng đối với phương trình √x(x – 1) + √x(x + 2) = 2√x^2. A. Tập xác định của phương trình là [1;+vc). B. Phương trình có tổng các nghiệm bằng 1,125. C. Phương trình đã cho tương đương phương trình √x(10x – 9) = 0. D. Phương trình tồn tại nghiệm không vượt quá – 2. [ads] + Biết rằng phương trình 2x^2 + 2xsina = 2x + cosa^2 luôn có nghiệm với mọi giá trị của a. Ký hiệu P, Q tương ứng là giá trị lớn nhất, giá trị nhỏ nhất của tổng bình phương hai nghiệm. Tính 3P + 2Q. + Cho hình vuông ABCD, các điểm E, F, G, H theo thứ tự là trọng tâm các tam giác ADC, DCB, ABC, ABD. Ký hiệu d1, d2, d3, d4 tương ứng là các đường thẳng đi qua E và vuông góc với BD, đi qua F và vuông góc với AC, đi qua G và vuông góc với BD, đi qua H và vuông góc với AC. Tập hợp các điểm M thỏa mãn đẳng thức MA^2 + MB^2 + MC^2 – 3MD^2 = -4a^2/3 là đường thẳng nào sau đây?
Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phước Long TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phước Long TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Phước Long, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Phước Long – TP HCM : + Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = -x2 – 2x + 2. + Trong mặt phẳng với hệ tọa độ Oxy cho ba điểm A(3;8), B(-1;2) và C(6;-1). a) Chứng minh ba điểm A, B, C tạo thành một tam giác. Tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm tọa độ điểm E, biết E nằm trên trục Oy và tam giác ACE vuông tại E. c) Tìm tọa độ điểm H, biết rằng H thuộc đường thẳng d: y = x và độ dài đoạn BH bằng 5. + Cho phương trình (x2 + 2x – 3)(x2 – 2x – 3m + 2) = 0. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm kép.
Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Hữu Huân TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Hữu Huân TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Nguyễn Hữu Huân, thành phố Hồ Chí Minh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi cuối học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Nguyễn Hữu Huân – TP HCM : + Tìm giá trị nhỏ nhất của hàm số y = 3√(x – 1) + 2√(5 – x) trên đoạn [1;5]. + Trong hệ tọa độ Oxy, cho tam giác ABC có A(-3;4), B(-2;1), C(1;2). Chứng minh ABC là tam giác vuông cân. Tính diện tích tam giác ABC. + Cho tam giác ABC có AB = 6, AC = 8, BC = 7. Tính độ dài đường trung tuyến AM và đường cao BH của tam giác ABC.