Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào môn Toán trường THCS Giảng Võ Hà Nội

Nội dung Đề thi thử vào môn Toán trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán trường THCS Giảng Võ Hà Nội Đề thi thử vào môn Toán trường THCS Giảng Võ Hà Nội Ngày 28 tháng 05 năm 2020, trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Đề thi thử này bao gồm 02 trang với 05 bài toán dạng tự luận, và thời gian làm bài là 120 phút. Trích dẫn một số bài toán trong đề thi thử: Bài toán 1: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tại hội khỏe phù đổng của thành phố Hà Nội, có 56 đội bóng đã đăng ký tham gia. Ban tổ chức dự kiến chia 56 đội thành các bảng đấu với số đội ở mỗi bảng bằng nhau. Tuy nhiên, sau khi có đội không tham dự, ban tổ chức quyết định tăng thêm ở mỗi bảng 1 đội, dẫn đến giảm 3 bảng đấu. Hỏi số bảng dự kiến lúc đầu là bao nhiêu? Bài toán 2: Người ta thả một quả trứng vào cốc thủy tinh hình trụ có chứa nước, trứng chìm hoàn toàn xuống đáy cốc và nằm ngang, chứng tỏ qua trứng đó còn tươi (được đẻ từ 1 đến 2 ngày). Hãy tính thể tích quả trứng biết diện tích đáy của cột nước hình trụ là 16,7 cm2 và nước trong cốc dâng thêm 8,2 mm. Bài toán 3: Cho tứ giác ABCD nội tiếp (O) đường kính AD, gọi E là giao điểm của AC và BD. Kẻ EF vuông góc với AD tại F. Em cần chứng minh rằng tứ giác ABEF nội tiếp được đường tròn và CA là tia phân giác của góc BCF. Đề thi thử vào lớp 10 môn Toán tại trường THCS Giảng Võ Hà Nội là cơ hội để học sinh thử sức và chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Lê Lợi - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Lê Lợi, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Lê Lợi – Thanh Hóa : + Cho hàm số: y = ax + b. Tìm a, b biết đồ thị của hàm số đã cho song song với đường thẳng (1 d): y = 3x – 5 và đi qua giao điểm Q của hai đường thẳng (2 d): y = 2x – 3; (3 d): y = – 3x + 2. + Tìm các giá trị của tham số m để phương trình 2 2 x 2 (m 1) x m 0 có hai nghiệm phân biệt 1 2 x x thỏa mãn hệ thức 2 1 2 1 2 x x 6m x 2x. + Cho tam giác ABC nhọn (AB < AC). Đường cao BD, CE cắt nhau ở H. DE cắt BC ở F. M là trung điểm của BC. Chứng minh rằng: 1) Tứ giác BEDC là tứ giác nội tiếp. 2) FE. FD = FB. FC. 3) FH vuông góc với AM.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Minh Khai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Minh Khai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 24 tháng 02 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Minh Khai – Hà Nội : + Cho đường thẳng (d): y = -x + 2m – 1 a) Tìm m để đường thẳng (d) đi qua điểm Q(1;-2). b) Tìm m để đường thẳng (d) và đường thẳng (d’): y = 2x − 3 cắt nhau tại một điểm nằm về phía bên trái trục tung. + Cho tam giác ABC. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc BC, AB lần lượt tại D và E. a) Chứng minh bốn điểm B; D; O; E cùng thuộc một đường tròn. b) Kẻ đường kính DF của (O). Tiếp tuyến của (O) tại F cắt AB; AC lần lượt tại P và Q. Chứng minh tam giác BOP vuông. c) Kéo dài AF cắt BC tại M. Chứng minh: BD = CM. + Cho a, b, c là độ dài ba cạnh của tam giác thoả mãn: 2c + b = abc. Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2022 – 2023 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy – Hà Nội : + Cho P(x) là đa thức với hệ số nguyên thỏa mãn P(2021).P(2022) = 2023. Hỏi đa thức P(x) có nghiệm nguyên hay không? + Cho tam giác ABC nhọn không cân (AB < AC) các đường cao AD, BE, CF cắt nhau tại H. Lấy các điểm P, Q trên BE, CF sao cho EFPQ là hình bình bình hành có giao hai đường chéo là H. Đường tròn ngoại tiếp tam giác DPQ cắt lại BE, CF lần lượt tại K, L (K khác P, L khác Q), đường thẳng AD cắt EF tại I, gọi M là trung điểm của AC. a. Chứng minh: HI FI HD FD và 4 điểm D, M, E, F nằm trên một đường tròn. b. Gọi G là giao điểm của PQ với AD, N là giao điểm của DM với HC. Chứng minh: KL // BC và các tam giác PDG, LDN đồng dạng. c. Chứng minh: M, K, L thẳng hàng. + Trong 100 số lẻ đầu tiên 1, 3, 5, 7, 9, …, 199 hãy tìm số tự nhiên k bé nhất sao cho khi chọn k số tùy ý trong số 100 số trên bao giờ cũng có 2 số mà một trong 2 số đó là bội của số còn lại.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THPT Chu Văn An - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT Chu Văn An, tỉnh Thái Nguyên; đề thi gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THPT Chu Văn An – Thái Nguyên : + Nhiệt độ Trái Đất tăng cao sẽ gây hậu quả nghiêm trọng làm thay đổi mực nước biển toàn cầu; biến đổi mạnh mẽ các mô hình khí hậu dẫn đến sự tuyệt chủng của các loài động, thực vật cũng như ảnh hưởng mạnh mẽ đến đời sống con người. Các nhà khoa học tin rằng Trái Đất bắt đầu nóng lên kể từ năm 1950 do hiệu ứng nhà kính và đưa ra công thức dự báo nhiệt độ trung bình trên bề mặt Trái Đất như sau T = 0,02t + 15. Trong đó: T là nhiệt độ trung bình mỗi năm (°C), t là số năm kể từ 1950. Hãy tính nhiệt độ trên Trái Đất vào các năm 1950 và 2023. + Cho hàm số bậc nhất y = (1 – 2m)x + 4m + 1 với m là tham số. Tìm m để hàm số đã cho đồng biến trên R và đồ thị của nó cắt trục Oy tại điểm A(0;1). + Cho tam giác ABC vuông tại A. Gọi O là tâm đường tròn ngoại tiếp tam giác, d là tiếp tuyến của đường tròn (O) tại A. Các tiếp tuyến của đường tròn (O) tại B, C cắt đường thẳng d theo thứ tự tại điểm D, E. Chứng minh BC là tiếp tuyến của đường tròn đường kính DE.