Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kì 1 Toán 11 năm 2021 - 2022 trường THPT Phan Đình Phùng - Quảng Bình

giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề kiểm tra cuối học kì 1 môn Toán 11 năm học 2021 – 2022 trường THPT Phan Đình Phùng, thành phố Đồng Hới, tỉnh Quảng Bình; đề thi gồm 35 câu trắc nghiệm (07 điểm) và 03 câu tự luận (03 điểm), thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án trắc nghiệm và hướng dẫn giải chi tiết tự luận các mã đề 111 – 112 – 113 – 114. Trích dẫn đề cuối kì 1 Toán 11 năm 2021 – 2022 trường THPT Phan Đình Phùng – Quảng Bình : + Cho đường thẳng d song song với mặt phẳng (P). Mệnh đề nào sau đây đúng? A. Đường thẳng d có vô số điểm chung với mặt phẳng (P). B. Đường thẳng d có hai điểm chung với mặt phẳng (P). C. Đường thẳng d không có điểm chung với mặt phẳng (P). D. Đường thẳng d có đúng một điểm chung với mặt phẳng (P). + Trong không gian, cho hai đường thẳng song song a và b. Mệnh đề nào sau đây đúng? A. Không tồn tại mặt phẳng đi qua cả hai đường thẳng a và b. B. Có đúng hai mặt phẳng đi qua cả hai đường thẳng a và b. C. Có vô số một mặt phẳng đi qua cả hai đường thẳng a và b. D. Có đúng một mặt phẳng đi qua cả hai đường thẳng a và b. + Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của BC và BD, mặt phẳng (P) đi qua IJ cắt cạnh AC, AD lần lượt tại M, N. Mệnh đề nào dưới đây đúng? A. Hai đường thẳng BC và MN song song. B. Hai đường thẳng IJ và MN song song. C. Hai đường thẳng NJ và BC song song. D. Hai đường thẳng IM và MJ song song. + Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy gồm 4 ghế. Người ta xếp chỗ ngồi cho 4 học sinh trường A và 4 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách sắp xếp, sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau. + Không gian mẫu của phép thử gieo một con súc sắc 6 mặt hai lần có bao nhiêu phần tử?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Lương Thế Vinh TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Lương Thế Vinh TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Lương Thế Vinh, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Lương Thế Vinh – TP HCM : + Từ tập hợp X = {0; 1; 2; 3; 4; 5} có thể lập được bao nhiêu số tự nhiên lẻ có 4 chữ số khác nhau? + Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ, 7 viên bi vàng. Lấy ngẫu nhiên 8 viên bi. Tính xác suất của biến cố A: “Các bi được chọn có đúng có 2 màu”. + Lớp 11A có 21 học sinh giỏi Toán, 16 học sinh giỏi Lý, 11 em không giỏi Toán và cũng không giỏi Lý. Chọn 2 em học sinh để tham gia dự án, tính xác suất của biến cố B: “Chọn được 2 em giỏi cả hai môn Toán và Lý”, biết lớp có 40 học sinh.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Mạc Đĩnh Chi TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Mạc Đĩnh Chi TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Trong kỳ thi học kỳ 1, phòng thi số 1 có 24 học sinh trong đó có 4 học sinh tên An, Bảo, Cường, Danh. Trong phòng thi có 24 bàn xếp thành 4 dãy theo hàng dọc, mỗi dãy có 6 bàn. Giám thị phòng thi bố trí cho các học sinh ngồi ngẫu nhiên vào 24 bàn, mỗi bàn 1 học sinh. Tính xác suất 4 bạn có tên trên ngồi cạnh nhau theo cùng một hàng dọc. + Xác suất ném bóng vào rổ thành công trong mỗi lần ném của bốn học sinh An, Bảo, Cường, Danh lần lượt là 0.5, 0.6, 0.7, 0.8. Cho mỗi học sinh trên ném bóng vào rổ 1 lần. Tính xác suất có ít nhất một người ném thành công. + Trên một đường tròn cho n điểm phân biệt. Biết số tam giác có 3 đỉnh lấy từ n điểm này nhiều hơn số đoạn thẳng có 2 đầu mút cũng được lấy từ n điểm này là 75. Tìm n.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Marie Curie, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trường X tổ chức kiểm tra tập trung 3 môn Toán, Văn và Ngoại ngữ cho học sinh khối 11 trong thời gian một tuần (không tổ chức kiểm tra vào ngày chủ nhật). Biết rằng mỗi ngày học sinh chỉ kiểm tra một môn. Tính xác suất để môn Toán kiểm tra đầu tiên và các môn không kiểm tra vào hai ngày liên tiếp nhau. + Lớp 11A có 30 học sinh trong đó có 20 nam và 10 nữ. Có bao nhiêu cách chọn ra một nhóm 7 học sinh của lớp 11A gồm 4 học sinh nam và 3 học sinh nữ? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, OC và SD. a) Chứng minh đường thẳng MP song song với mặt phẳng (ABCD). b) Tìm giao tuyến của mặt phẳng (MNP) và mặt phẳng (ABCD). c) Tìm thiết diện tạo bởi mặt phẳng (MNP) và hình chóp S.ABCD.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Trung Trực TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Trung Trực TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Nguyễn Trung Trực, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Trung Trực – TP HCM : + Trong một hộp đựng 20 quả nhãn, 15 quả nho, 10 quả sơri. Lấy ngẫu nhiên ra 3 quả. Tính xác suất để lấy ra được các loại quả khác nhau. + Một người có 10 đôi giày khác nhau. Trong lúc đi du lịch vội vã nên đã lấy ngẫu nhiên 4 chiếc giày. Tính xác suất để người đó không lấy được đôi giầy nào đúng. + Cho hình chóp S.ABCD có đáy là tứ giác có các cặp cạnh đối không song song. AB cắt CD tại E. Gọi I, J lần lượt là trung điểm của SA, SB. Lấy N trên SD sao cho SN = 2ND. Lấy M là giao điểm của SC với (IJN). Chứng minh IJ, MN và SE đồng quy.