Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh Toán 10 THPT năm 2018 - 2019 sở GDĐT Hải Dương

Thứ Tư ngày 03 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 10 khối THPT năm học 2018 – 2019, nhằm tuyển chọn ra những em học sinh lớp 10 giỏi môn Toán đang học tập tại các trường THPT tại Hải Dương để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán 10 cấp tỉnh. Đề thi HSG tỉnh Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài thi trong 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề thi HSG tỉnh Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương : + Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Để sản xuất được một kilôgam sản phẩm loại I cần 2kg nguyên liệu và máy làm việc trong 3 giờ. Để sản xuất được một kilôgam sản phẩm loại II cần 4kg nguyên liệu và máy làm việc trong 1,5 giờ. Biết một kilôgam sản phẩm loại I lãi 300000 đồng, một kilôgam sản phẩm loại II lãi 400000 đồng và máy chuyên dụng làm việc không quá 120 giờ. Hỏi xưởng cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? + Cho tam giác nhọn ABC, gọi H, E, K lần lượt là chân đường cao kẻ từ các đỉnh A, B, C. Gọi diện tích các tam giác ABC và HEK lần lượt là S_ΔABC và S_ΔHEK . Biết rằng S_ΔABC = 4.S_ΔHEK, chứng minh (sinA)^2 + (sinB)^2 + (sinC)^2 = 9/4. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A. Đường thẳng AB có phương trình x + y – 3 = 0, đường thẳng AC có phương trình x – 7y + 5 = 0. Biết điểm M(1;1;0) thuộc cạnh BC, tìm tọa độ các đỉnh A, B, C.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic Toán 10 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội
Đề thi Olympic Toán 10 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với  bài toán tự luận, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em HSG môn Toán khối 10, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 10 năm 2017 – 2018 : + Cho hàm số y = x^2 – 4x + 3 có đồ thị (P). Lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. + Tìm a, b, c sao cho hàm số y = f(x) = ax^2 + bx + c có đồ thị là một parabol với đỉnh là I(2; 9) và đường parabol đó đi qua điểm A(-1; 0). + Cho tứ giác ABCD có AC ⊥ BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Chứng minh rằng (ab + cd)(ad + bc) = 8S.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 cụm Tân Yên - Bắc Giang
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), kỳ thi diễn ra vào ngày 28/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho phương trình x^2 + 2x + 3m – 4 (m là tham số). a) Tìm các giá trị của m để phương trình có hai nghiệm. b) Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1^2.x2^2 ≤ x1^2 + x2^2 + 4. c) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt cùng thuộc đoạn [-3; 4]. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc bằng 45 độ. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 - Nghệ An
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 trường THPT Quỳ Hợp 1 – Nghệ An gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, thí sinh không được sử dụng máy tính cầm tay khi làm bài, kỳ thi diễn ra vào ngày 30/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho parabol (P): y = ax^2 + bx – 1. a. Tìm các giá trị của a; b để parabol có đỉnh S(-3/2; -11/2). b. Với giá trị của a; b tìm được ở câu 1, tìm giá trị của k để đường thẳng Δ: y = x(k + 6) + 1 cắt parabol tại hai điểm phân biệt M; N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: 4x + 2y – 3 = 0. [ads] + Cho hình vuông ABCD cạnh có độ dài là a. Gọi E; F là các điểm xác định bởi BE = 1/3.BC, CF = -1/2.CD, đường thẳng BF cắt đường thẳng AE tại điểm I. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.