Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ

Nội dung Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Bản PDF - Nội dung bài viết Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Sytu xin trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh đề chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán và chuyên Tin học) năm học 2023 - 2024 tại trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề vào lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Hùng Vương - Phú Thọ: Bạn An viết lên bảng 11 số nguyên dương (không nhất thiết phân biệt) có tổng bằng 30. Chứng minh rằng bạn An có thể xóa đi một số số sao cho các số còn lại trên bảng có tổng bằng 10. Trên đường tròn tâm O đường kính AB, R=2 lấy điểm N sao cho AN=R và M là một điểm thay đổi trên cung nhỏ BN (M khác B và N). Gọi I là giao điểm của AM và BN, H là hình chiếu của I trên AB, IH cắt AN tại C, K là điểm đối xứng với N qua AB. Chứng minh CM CB CI CH và ba điểm KHM thẳng hàng. Gọi P là giao điểm thứ hai của NH và (O). Chứng minh tâm đường tròn ngoại tiếp tam giác HPK thuộc đường thẳng cố định khi M thay đổi. Xác định vị trí của điểm M để tổng MB MN đạt giá trị lớn nhất. Viết lên bảng 2023 số 11 2 3 2022 2023. Mỗi bước ta xoá đi 2 số x y bất kì trên bảng rồi viết lên bảng số 1 xy x y (các số còn lại trên bảng giữ nguyên). Thực hiện liên tục thao tác trên cho đến khi trên bảng chỉ còn lại đúng một số. Hỏi số đó bằng bao nhiêu? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2) Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2) Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (vòng 2) bao gồm 4 bài toán tự luận. Trong đó: + Bài toán thứ nhất: Cho n là số nguyên dương, n>5. Xét một đa giác lồi n cạnh. Yêu cầu là kẻ số đường chéo của đa giác sao cho chúng chia đa giác thành đúng k miền, mỗi miền là một ngũ giác lồi (không có điểm chung). Phần a của bài toán yêu cầu chứng minh rằng với n=2018, k=672, ta có thể thực hiện được. Phần b của bài toán đặt câu hỏi liệu với n=2017, k=672 ta có thể thực hiện được không và yêu cầu giải thích. + Bài toán thứ hai: Giả sử p, q là hai số nguyên tố thỏa mãn đẳng thức p(p – 1) = q(q^2 – 1). Phần a của bài toán yêu cầu chứng minh rằng tồn tại số nguyên dương K sao cho p – 1 = kq và q^2 – 1 = kp. Phần b của bài toán yêu cầu tìm tất cả các số nguyên tố p; q thỏa mãn đẳng thức đề bài. Đề thi này đòi hỏi sự tỉ mỉ, logic và khả năng phân tích của thí sinh để giải quyết các bài toán. Hy vọng sẽ có nhiều thí sinh tài năng đạt kết quả cao khi tham gia bài thi này.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (Vòng 1)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (Vòng 1) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên KHTN Hà Nội (Vòng 1) Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên KHTN Hà Nội (Vòng 1) Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (Vòng 1) đưa ra các bài toán tự luận, với lời giải chi tiết để giúp học sinh hiểu rõ vấn đề. Trong đề thi, có một số bài toán như sau: Cho hình thoi ABCD có góc BAD < 90 độ. Đường tròn tâm I nội tiếp tam giác ABD tiếp xúc với BD, BA lần lượt tại J, L. Trên đường thẳng LJ lấy điểm K sao cho BK song song ID. Hãy chứng minh rằng: a) Góc CBK = góc ABI b) KC vuông góc với KB c) Bốn điểm C, K, I, L cùng nằm trên một đường tròn Tìm tập hợp số nguyên dương n sao cho tồn tại một cách sắp xếp các số 1, 2, 3 ... n thành a1, a2, a3 ... an sao cho khi chia các số a1, a1a2, a1a2a3 ... a1a2...an cho n ta được các số dư đôi một khác nhau. Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn khuyến khích sự logic, cẩn thận và kiên nhẫn trong quá trình giải quyết vấn đề.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Thanh Hóa
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thanh Hóa Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thanh Hóa Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thanh Hóa bao gồm 4 bài toán tự luận với lời giải chi tiết. Trong đó có các bài toán như sau: 1. Cho phương trình: nx^2 + x - 2 = 0 (1), với n là tham số. a) Giải phương trình (1) khi n = 0. b) Giải phương trình (1) khi n = 1. 2. Cho nửa đường tròn (O) đường kính MN = 2R. Gọi (d) là tiếp tuyến của (O) tại N. Trên cung MN lấy điểm E tùy ý (E không trùng với M và N), tia ME cắt (d) tại điểm F. Gọi P là trung điểm của ME, tia PO cắt (d) tại điểm Q. a) Chứng minh tứ giác ONFP là tứ giác nội tiếp. b) Chứng minh: OF vuông góc với MQ và PM, PF = PO.PQ. c) Xác định vị trí điểm E trên cung MN để tổng MF + 2ME đạt giá trị nhỏ nhất. Đề thi này đòi hỏi sự tỉ mỉ, logic và kiến thức vững chắc từ phía thí sinh. Mong rằng các thí sinh sẽ có bài thi thành công và đạt kết quả tốt trong kỳ tuyển sinh dành cho học sinh vào lớp 10.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lâm Đồng
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng bao gồm 5 bài toán tự luận. Đây là một đề thi khá thú vị với những bài toán mang tính logic cao, đòi hỏi học sinh phải suy luận và chứng minh rõ ràng. Trong đó, có một số bài toán đáng chú ý như sau: 1. Từ điểm P ngoài đường tròn (O), kẻ hai tiếp tuyến PA, PB với đường tròn (A, B là hai tiếp điểm). Gọi M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M (CD không đi qua O và CD không trùng với AB ). Hai tiếp tuyến của đường tròn (O) tại C và D cắt nhau ở Q. Chứng minh rằng OP vuông góc với PQ. 2. Chứng minh rằng nếu n là là tự nhiên lớn hơn 1 thì 2^n - 1 không thể là số chính phương. Các bài toán trong đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán toán học mà còn giúp họ phát triển tư duy logic và khả năng chứng minh. Hy vọng rằng đề thi này sẽ giúp các thí sinh thử thách và phấn đấu hết mình trong kỳ thi tuyển sinh.