Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2021 2022 trường THPT Phan Huy Chú Hà Nội

Nội dung Đề thi thử Toán vào 10 năm 2021 2022 trường THPT Phan Huy Chú Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 năm 2021-2022 Trường THPT Phan Huy Chú Hà Nội Đề thi thử Toán vào 10 năm 2021-2022 Trường THPT Phan Huy Chú Hà Nội Đề thi thử Toán vào lớp 10 năm học 2021 – 2022 trường THPT Phan Huy Chú ở Hà Nội được xây dựng với 5 bài toán dạng tự luận, đòi hỏi học sinh phải áp dụng kiến thức và kỹ năng Toán học một cách sáng tạo và logic. Thời gian làm bài là 120 phút, đủ để học sinh có thời gian suy nghĩ và giải quyết các bài toán phức tạp. Một trong những bài toán trong đề thi là về hai xe ô tô đi từ Hà Nội đến Hải Phòng, với điều kiện và yêu cầu cụ thể, học sinh cần phải lập phương trình hoặc hệ phương trình để giải quyết vấn đề. Bài toán này yêu cầu học sinh tính toán, tư duy logic và sáng tạo trong việc xử lý thông tin để tìm ra đáp án chính xác. Ngoài ra, đề thi còn có bài toán về việc xây dựng một ngôi nhà kính phức tạp, yêu cầu học sinh tính toán thể tích của ngôi nhà dựa trên thông tin đã cho. Đây là bài toán kết hợp giữa kiến thức hình học và toán học 3 chiều, đòi hỏi học sinh phải có khả năng tư duy không gian và tính toán chính xác. Bài toán cuối cùng liên quan đến tam giác vuông và đường tròn, học sinh cần phải chứng minh và tính toán các mối liên hệ giữa các phần tử trong tam giác. Đây là bài toán có nhiều bước logic, yêu cầu học sinh phải suy nghĩ kỹ lưỡng trước khi đưa ra các bước chứng minh đúng đắn. Qua đề thi thử này, học sinh không chỉ được kiểm tra kiến thức mà còn được khuyến khích phát triển tư duy, logic và sự sáng tạo trong giải quyết các vấn đề. Đây là cơ hội tốt để học sinh rèn luyện kỹ năng Toán học và chuẩn bị tốt cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 chuyên môn Toán (chung - XH) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên xã hội) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào 10 chuyên môn Toán (chung - TN) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên tự nhiên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (môn chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Lai Châu : + Chủ Nhật hàng tuần, Nam thường tập thể dục bằng cách đạp xe đạp trên một quãng đường từ nhà lên Thành phố và ngược lại. Vận tốc đạp xe đạp của Nam lúc đi nhanh hơn lúc về 3km/h. Biết quãng đường từ nhà Nam đến Thành phố là 30km và tổng thời gian cả đi lẫn về là 4 giờ 30 phút. Tính vận tốc đạp xe đạp lúc đi của Nam. + Cho tam giác ABC vuông tại A, biết cạnh BC = 10cm, góc B = 60 độ (hình vẽ bên). Tính cạnh AC, với sin 60°. + Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD với đường tròn (C nằm giữa M và D, O và A nằm về hai phía đối với CD). Gọi H là giao điểm của MO và AB. a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh MC.MD = MH.MO. c)Kẻ đường kính AI của (O), các dây IC, ID cắt MO tại P và Q. Chứng minh OP = OQ.
Đề thi vào 10 môn Toán (chung) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dùng chung cho tất cả các thí sinh) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chung) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Tìm m, n để đường thẳng (d): y = mx + n đi qua điểm A(2;3) và cắt đường thẳng y = x – 2 tại điểm có hoành độ bằng −1. + Cho phương trình x2 − 2(m + 1)x + m2 + 4 = 0 (m là tham số). 1. Giải phương trình khi m = 6. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn 6×12 + 6x1x2 = (m + 1)(x13 + x23 – 12×2). + Cho đường tròn (O) đường kính AB. Trên đường tròn (O) lấy điểm C không trùng với B sao cho CA > CB. Các tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên AB, E là giao điểm của hai đường thẳng OD và AC. 1. Chứng minh tứ giác OADC nội tiếp đường tròn. 2. Gọi F là giao điểm của hai đường thẳng CD và AB. Chứng minh 2BCF + CFB = 90. 3. Gọi M là giao điểm của hai đường thẳng BD và CH. Chứng minh OC/EM – EO/ED = 1.