Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập tứ giác

Tài liệu gồm 55 trang, tóm tắt lý thuyết, các dạng toán và bài tập tứ giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 1. Bài 1. Tứ giác. + Dạng 1. Tính góc của tứ giác. + Dạng 2. Vẽ tứ giác. + Dạng 3. Tính độ dài. Hệ thức giữa các độ dài. Bài 2. Hình thang. + Dạng 1. Tính góc của hình thang. + Dạng 2. Nhận biết hình thang, hình thang vuông. + Dạng 3. Tính toán và chứng minh về độ dài. Bài 3. Hình thang cân. + Dạng 1. Nhận biết hình thang cân. + Dạng 2. Sử dụng tính chất hình thang cân để tính số đo góc, độ dài đường thẳng. Bài 4. Đường trung bình của tam giác, của hình thang. + Dạng 1. Sử dụng đường trung bình của tam giác để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 2. Sử dụng đường trung bình của tam giác để chứng minh hai đường thẳng song song, chứng minh ba điểm thẳng hàng, tính góc. + Dạng 3. Sử dụng đường trung bình của hình thang để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 4. Sử dụng đường trung bình của hình thang để chứng minh hai đường thẳng song song, chứng minh ba đlểm thẳng hàng, tính góc. Bài 5. Dựng hình bằng thước và compa. Dựng hình thang. + Dạng 1. Dựng tam giác. + Dạng 2. Dựng hình thang. + Dạng 3. Dựng góc có số đo đặc biệt. + Dạng 4. Dựng tứ giác, dựng điểm hay đường thẳng thoả mãn một yêu cầu nào đó. Bài 6. Đối xứng trục. + Dạng 1. Vẽ hình, nhận biết hai hình đối xứng với nhau qua một trục. + Dạng 2. Sử dụng đối xứng trục để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm trục đối xứng của một hình, hình có trục đối xứng. + Dạng 4. Dựng hình, thực hành có sử dụng đối xứng trục. Bài 7. Hình bình hành. + Dạng 1. Nhận biết hình bình hành. + Dạng 2. Sử dụng tính chất của hình bình hành để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau. + Dạng 3. Sử dụng tính chất đường chéo hình bình hành để chứng minh ba điểm thẳng hàng, chứng minh ba đường thẳng đồng quy. + Dạng 4. Dựng hình bình hành, hoặc dựng hình có liên quan đến hình bình hành. Bài 8. Đối xứng tâm. + Dạng 1. Vẽ hình đối xứng qua một tâm. + Dạng 2. Nhận biết hai điểm đối xứng với nhau qua một tâm. Sử dụng đối xứng tâm để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm tâm đối xứng của một hình, tìm hình có tâm đối xứng. + Dạng 4. Dựng hình có sử dụng đối xứng tâm. Bài 9. Hình chữ nhật. + Dạng 1. Nhận biết hình chữ nhật. + Dạng 2. Sử dụng tính chất hình chữ nhật để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tính chất đối xứng của hình chữ nhật. + Dạng 4. Áp dụng vào tam giác. + Dạng 5. Dựng hình chữ nhật. Bài 10. Đường thẳng song song với một đường thẳng cho trước. + Dạng 1. Đường thẳng song song cách đều. + Dạng 2. Chứng tỏ một điểm chuyển động trên một đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Phát biểu một tập hợp điểm. Bài 11. Hình thoi. + Dạng 1. Nhận biết hình thoi. + Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. + Dạng 3. Tính chất đối xứng của hình thoi. + Dạng 4. Dựng hình thoi. Bài 12. Hình vuông. + Dạng 1. Nhận biết hình vuông. + Dạng 2. Sử dụng tính chất hình vuông để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. + Dạng 4. Dựng hình vuông, cắt hình vuông. Ôn tập chương I.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn ôn tập học kì 2 Toán 8 năm 2021 - 2022 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập cuối học kì 2 môn Toán 8 năm học 2021 – 2022 trường Trung học Vinschool, thành phố Hà Nội. I. KIẾN THỨC TRỌNG TÂM Phương trình bậc nhất một ẩn: – Phương trình bậc nhất một ẩn. – Phương trình đưa về dạng ax + b = 0. – Phương trình tích. – Phương trình chứa ẩn ở mẫu. – Giải bài toán bằng cách lập phương trình. Bất phương trình: – Liên hệ giữa thứ tự và phép cộng. – Liên hệ giữa thứ tự và phép nhân. – Bất phương trình một ẩn. – Bất phương trình bậc nhất một ẩn. – Phương trình chứa dấu giá trị tuyệt đối. Tam giác đồng dạng: – Định lí Ta-lét trong tam giác: định lí thuận, định lí đảo và hệ quả. – Tính chất đường phân giác của tam giác. – Khái niệm hai tam giác đồng dạng. – Ba trường hợp đồng dạng của tam giác. – Các trường hợp đồng dạng của tam giác vuông. – Ứng dụng thực tế của tam giác đồng dạng. Hình học không gian: – Khái niệm hình hộp, hình lăng trụ đứng, hình chóp đều, hình chóp cụt đều. – Các công thức tính diện tích xung quanh, diện tích toàn phần, thể tích hình lăng trụ đứng, hình chóp đều. II. BÀI TẬP
Hướng dẫn ôn tập giữa kì 2 Toán 8 năm 2021 - 2022 trường THCS Thanh Am - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 2 môn Toán 8 năm học 2021 – 2022 trường THCS Thanh Am, quận Long Biên, thành phố Hà Nội. I. PHẠM VI KIẾN THỨC 1. LÝ THUYẾT 1.1. Đại số. – Biến đổi phân thức đại số. – Các dạng phương trình: phương trình ax + b = 0, phương trình tích, phương trình chứa ẩn ở mẫu. – Giải bài toán bằng cách lập phương trình dạng toán chuyển động. 1.2. Hình học. – Định lí Ta-lét (thuận, đảo), hệ quả định lí Ta-lét. – Tính chất đường phân giác trong tam dạng. – Các trường hợp đồng dạng của tam giác, tam giác vuông. 2. DẠNG BÀI 2.1. Câu hỏi tự luận. – Rút gọn biểu thức và các câu gỏi phụ (tính giá trị của biểu thức, tìm x biết giá trị của biểu thức). – Giải phương trình (ax + b = 0, phương trình tích, phương trình chứa ẩn ở mẫu). – Giải bài toán bằng cách lập phương trình (toán chuyển động). – Chứng minh tam giác đồng dạng, các tỉ lệ bằng nhau. – Vận dụng định lí Ta-lét, tính chất đường phân giác để tính độ dài cạnh. 2.2. Câu hỏi trắc nghiệm. II. CÂU HỎI THAM KHẢO A. MỘT SỐ CÂU HỎI TRẮC NGHIỆM. B. MỘT SỐ BÀI TẬP TỰ LUẬN.
Đề cương giữa học kì 2 Toán 8 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 2 môn Toán 8 năm học 2021 – 2022 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội. A. KIẾN THỨC Phương trình bậc nhất và cách giải. Phương trình đưa về dạng ax + b = 0. Phương trình tích. Phương trình chứa ẩn ở mẫu thức. Giải bài toán bằng cách lập phương trình. Diện tích hình thoi, hình thang, định lí Talet, hệ quả và định lí đảo của định lí Talet. Tính chất đường phân giác trong tam giác. Tam giác đồng dạng. B. BÀI TẬP THAM KHẢO
Chuyên đề tam giác đồng dạng bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 38 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề tam giác đồng dạng bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh.