Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập VDC phương trình mặt phẳng

Tài liệu gồm 19 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình mặt phẳng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình mặt phẳng: A. LÍ THUYẾT TRỌNG TÂM 1. Phương trình mặt phẳng. 2. Khoảng cách từ một điểm tới mặt phẳng. 3. Vị trí tương đối. 4. Góc giữa hai mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu. Dạng 3: Phương trình mặt phẳng đoạn chắn. Dạng 4: Vị trí tương đối giữa hai mặt phẳng. Dạng 5: Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 6: Khoảng cách từ một điểm đến mặt phẳng. Dạng 7: Góc giữa hai mặt phẳng. Dạng 8: Một số bài toán cực trị.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng - Đặng Việt Đông
Tài liệu gồm 50 trang tuyển chọn 151 bài tập trắc nghiệm toán ứng dụng có đáp án. Trích dẫn tài liệu : 1. Một khối gạch hình lập phương (không thấm nước) có cạnh bằng 2 được đặt vào trong một chiếu phễu hình nón tròn xoay chứa đầy nước theo cách như sau: Một cạnh của viên gạch nằm trên mặt nước (nằm trên một đường kính của mặt này); các đỉnh còn lại nằm trên mặt nón; tâm của viên gạch nằm trên trục của hình nón. Tính thể tích nước còn lại ở trong phễu (làm tròn 2 chữ số thập phân). [ads] 2. Học sinh lần đầu thử nghiệm tên lửa tự chế phóng từ mặt đất theo phương thẳng đứng với vận tốc 15m/s. Hỏi sau 2,5s tên lửa bay đến độ cao bao nhiêu ? (giả sử bỏ qua sức cản gió, tên lửa chỉ chịu tác động của trọng lực g = 9,8 m/s2) 3. Một công ti chuyên sản xuất container muốn thiết kế các thùng gỗ đựng hàng bên trong dạng hình hộp chữ nhật không nắp, đáy là hình vuông, có V = 62,5 cm3. Hỏi các cạnh hình hộp và cạnh đáy là bao nhiêu để S xung quanh và S đáy nhỏ nhất?
121 bài tập trắc nghiệm câu hỏi thực tế, có hướng dẫn giải - Nguyễn Bảo Vương
Tài liệu gồm 48 trang với 121 bài toán thực tế có hướng dẫn giải và đáp án do tác giả Nguyễn Bảo Vương cùng nhóm tác giả tổng hợp và biên soạn. Trích một số bài toán trong tài liệu: 1. Một con cá bơi ngược dòng để vượt một khoảng cách là 300km, vận tốc nước là 6(km/h). Vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức: E(v) =  c.v^3.t, trong đó c là hằng số, E tính bằng Jun. Hỏi vận tốc bơi của cá khi nước đứng yên sao cho năng lượng tiêu hao ít nhất là bao nhiêu ? [ads] 2. Trong tất cả các hình chữ nhật có diện tích S thì hình chữ nhật có chu vi nhỏ nhất bằng bao nhiêu? 3. Một nhà sản xuất cần thiết kế một thùng sơn dạng hình trụ có nắp đậy với dung tích 1000 cm3. Biết rằng bán kính của nắp đậy sao cho nhà sản xuất tiết kiệm nguyên vật liệu nhất có giá trị là a. Hỏi giá trị a gần với giá trị nào nhất dưới đây?
80 bài tập trắc nghiệm luyện tập chuyên đề hàm số - Mẫn Ngọc Quang
Tài liệu gồm 54 trang với các bài toán trắc nghiệm ôn tập chuyên để hàm số, các bài tập có đáp án và được giải chi tiết. Trích dẫn tài liệu : + Cho hàm số y = x^3 – 3x^2 (C). Cho các mệnh đề: (1) Hàm số có tập xác định R (2) Hàm số đạt cực trị tại x = 0; x = 2 (3) Hàm số đồng biến trên các khoảng (-∞; 0) ∪ (2; +∞) (4) Điểm (0; 0) là điểm cực tiểu (5) yCĐ – yCT = 4 Có bào nhiêu mệnh đề đúng? [ads] + Cho hàm số y = x^3 – 3x^2 (C). Chọn số nhận định sai trong các nhận định sau: (1) Hàm số đồng biến trên khoảng (0; 2), hàm số nghịch biến trên các khoảng (-∞; 0); (2; +∞) (2) Hàm số đạt cực tiểu tại x = 0, hàm số đạt cực đại tại x = 2 (3) Phương trình tiếp tuyến của (C) tại điểm có hoành độ x0 = 1 là y = 3x – 5 + Cho hàm số y = (2x + 1)/(x + 1) có đồ thị (C). Cho các mệnh đề: (1) Hàm số đồng biến trên toàn tập xác định D = R\{1} (2) Hàm số không có cực trị (3) Đồ thị hàm số có tiệm cận đứng là y = 2, tiệm cận ngang là x = -1 (4) Đồ thị hàm số đối xứng nhau qua giao của hai tiệm cận I(-1; 2) Có bao nhiêu mệnh đề đúng?
Bài tập trắc nghiệm chuyên đề hàm số có lời giải chi tiết - Phạm Văn Huy
Tài liệu gồm 114 trang với bài tập trắc nghiệm chuyên đề hàm số đầy đủ các chủ đề, có đáp án và lời giải chi tiết. Trích dẫn tài liệu : + Cho hàm số y = f(x) = -x^4 – 4x^2 + 2. Chọn phát biểu đúng: A. Hàm số trên có 1 điểm cực đại và 2 điểm cực tiểu B. Hàm số trên có 2 điểm cực đại và 1 điểm cực tiểu C. Hàm số có 1 điểm cực trị là điểm cực đại D. Hàm số có 1 điểm cực trị là điểm cực tiểu [ads] + Cho hàm số y = x^3 – 3mx^2 + 3(2m – 1)x + 1 (Cm). Các mệnh đề dưới đây: (a) Hàm số (Cm) có một cực đại và một cực tiểu nếu m = 1 (b) Nếu m = 1 thì giá trị cực tiểu là 3m – 1 (c) Nếu m = 1 thì giá trị cực đại là 3m – 1 Mệnh đề nào đúng? A. Chỉ (a) đúng B. (a) và (b) đúng, (c) sai C. (a) và (c) đúng, (b) sai D. (a), (b), (c) đều đúng + Cho hàm số y = x^4 – 6x^2 + 3 có đồ thị là (C). Parabol y = -x^2 – 1 cắt đồ thị (C) tại bốn điểm phân biệt. Tổng bình phương các hoành độ giao điểm của P và (C) bằng?