Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 ôn thi THPTQG năm 2018 - 2019 trường chuyên Vĩnh Phúc lần 3

Vừa qua, trường THPT chuyên Vĩnh Phúc đã tiếp tục tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia năm học 2018 – 2019, đây đã là lần thứ 3 trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi này, mục đích nhằm giúp học sinh được rèn luyện, thử sức thường xuyên để củng cố và nâng cao kiến thức trước khi bước vào kỳ thi chính thức THPT Quốc gia năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức. xin giới thiệu đến thầy, cô và các em học sinh khối 12 nội dung đề KSCL Toán 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3, đề bám sát cấu trúc đề minh họa môn Toán năm 2019 của Bộ Giáo dục và Đào tạo với 50 câu trắc nghiệm khách quan, thời gian làm bài thi môn Toán là 90 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề KSCL Toán 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3 : + Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Tinh tanα khi thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. + Trong không gian Oxyz, lấy điểm C trên tia Oz sao cho OC = 1. Trên hai tia Ox, Oy lần lượt lấy hai điểm A, B thay đổi sao cho OA + OB = OC. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O.ABC? + Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình vẽ. Mệnh đề nào sau đây là đúng? A. Hàm số y = f(x) có 1 điểm cực tiểu và không có cực đại. B. Hàm số y = f(x) có 1 điểm cực đại và 2 điểm cực tiểu. C. Hàm số y = f(x) có 1 điểm cực đại và không có cực tiểu. D. Hàm số y = f(x) có 1 điểm cực đại và 1 điểm cực tiểu.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 12 ôn tập hè 2019 trường Yên Phong 1 Bắc Ninh
Nhằm giúp học sinh lớp 11 lên lớp 12 được ôn lại kiến thức Toán 11 trước khi các em bước vào năm học mới 2019 – 2020, trường THPT Yên Phong số 1, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng ôn tập hè năm 2019 môn Toán lớp 12. Đề kiểm tra Toán 12 ôn tập hè 2019 trường Yên Phong 1 – Bắc Ninh có mã đề 157, đề thi được biên soạn theo dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, đáp ứng đúng yêu cầu thi toán trắc nghiệm theo tinh thần của Bộ Giáo dục và Đào tạo, học sinh làm bài trong 90 phút, đề thi có đáp án mã đề 157, 261, 335, 436. [ads] Trích dẫn đề kiểm tra Toán 12 ôn tập hè 2019 trường Yên Phong 1 – Bắc Ninh : + Một nhóm học sinh lớp 5 gồm học sinh của lớp 5A, 5B, 5C. Trong đó lớp 5A có 1 em, lớp 5B có 4 em, lớp 5C có 3 em. Nhà trường chọn ngẫu nhiên 5 học sinh đi thi nghi thức Đội cấp huyện. Tính xác suất để chọn được học sinh của cả 3 lớp. + Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Mệnh đề nào dưới đây đúng? A. Nếu f(a).f(b) > 0 thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b). B. Nếu phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b) thì f(a).f(b) < 0. C. Nếu f(a).f(b) > 0 thì phương trình f(x) = 0 không có nghiệm nằm trong (a;b). D. Nếu f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b). + Một nhóm có 10 học sinh giỏi, giáo viên chủ nhiệm cần chọn 4 em đi tham dự buổi lễ khen thưởng cuối năm do Huyện tổ chức. Hỏi có bao nhiêu cách chọn?
Đề kiểm tra cuối hè năm 2019 môn Toán 12 trường THPT chuyên Bắc Ninh
Cuối kỳ nghỉ hè năm 2019 (khoảng giữa tháng 8 năm 2019), khi học sinh khối 12 bắt đầu tập trung đến trường để chuẩn bị cho năm học 2019 – 2020, trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh đã tổ chức kỳ thi kiểm tra chất lượng cuối kỳ nghỉ hè để kiểm tra lại kiến thức môn Toán 11 học sinh đã học từ năm học trước, qua đó có sự chuẩn bị tốt để tiếp thu kiến thức Toán 12. Đề kiểm tra cuối hè năm 2019 môn Toán 12 trường THPT chuyên Bắc Ninh với mã đề 101, đề được biên soạn theo dạng đề trắc nghiệm khách quan, đề gồm 50 câu hỏi và bài toán bao quát toàn bộ chương trình Toán 11, học sinh làm bài khảo sát chất lượng trong khoảng thời gian 90 phút, đề thi có đáp án mã đề 101, 102, 103, 104, 105, 106, 107, 108. [ads] Trích dẫn đề kiểm tra cuối hè năm 2019 môn Toán 12 trường THPT chuyên Bắc Ninh : + Mệnh đề nào sau đây là đúng? A. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường còn lại. B. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau. C. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường còn lại. D. Hai đường thẳng cùng vuông góc với một mặt phẳng thì song song với nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt đáy. Chọn khẳng định sai trong các khẳng định sau: A. Hai mặt phẳng (SAB) và (SAD) vuông góc với nhau. B. Đường thẳng DC vuông góc với mặt phẳng (SAD). C. AD là đoạn vuông góc chung của SA và DC. D. Góc giữa đường thẳng SC và mặt phẳng (ABCD) là ASC. + Biết rằng đồ thị hàm số y = f(x) = ax^4 + bx^3 + cx^2 + dx + e (a, b, c, d, e thuộc R, a khác 0 và b khác 0) cắt trục hoành Ox tại 4 điểm phân biệt. Khi đó đồ thị hàm số y = g(x) = (f'(x))^2 – f”(x).f(x) cắt trục hoành Ox tại bao nhiêu điểm?
Đề khảo sát Toán 12 đầu năm học 2019 2020 trường Thuận Thành 1 Bắc Ninh
Với mục đích kiểm tra đánh giá toàn diện lại các kiến thức Toán 11 đối với học sinh lớp 12, để chuẩn bị cho chương trình Toán 12 năm học 2019 – 2020 một cách tốt nhất, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh đã tổ chức kỳ thi khảo sát chất lượng đầu năm học 2019 – 2020 môn Toán 12. Đề khảo sát Toán 12 đầu năm học 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh có mã đề 571 được biên soạn theo hình thức trắc nghiệm khách quan, đề gồm 06 trang với 50 câu hỏi và bài tập bao quát chương trình Toán 11, đề thi có đáp án các mã đề 571, 572, 573, 574, 575 và lời giải chi tiết. [ads] Trích dẫn đề khảo sát Toán 12 đầu năm học 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC. Ta xây dựng dãy các tam giác A1B1C1, A2B2C2, A3B3C3 … sao cho A1B1C1 là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác AnBnCn là tam giác trung bình của tam giác An-1Bn-1Cn-1. Với mỗi số nguyên dương n, kí hiệu Sn tương ứng là diện tích hình tròn ngoại tiếp tam giác AnBnCn. Tính tổng S = S1 + S2 + … + Sn + …. + Cho hàm số f(x) có đạo hàm trên R và có đồ thị y = f'(x) như hình vẽ. Xét hàm số g(x) = f(x^2 – 2) + 2019. Gọi α0 là góc tạo bởi phần phía trên Ox của tiếp tuyến với đồ thị hàm số g(x) tại điểm x0 và tia Ox. Mệnh đề nào sau đây sai? + Tại trường THPT Thuận Thành số 1, tỉnh Bắc Ninh có ba bạn tên Long, Thắm, Minh Anh vừa tham gia kì thi THPTQG đạt kết quả cao. Ba bạn đều có ý định nguyện vọng vào trường ĐHSPHN. Được biết trường ĐHSPHN có bốn cổng đi vào. Tính xác suất để hôm nhập học có bạn Thắm và Long đi vào cùng một cổng (giả sử rằng cả ba bạn đều đi nhập học và việc vào mỗi cổng là ngẫu nhiên).
Đề khảo sát Toán 12 năm 2018 - 2019 trường THPT Tiên Lãng - Hải Phòng
Sáng thứ Ba ngày 04 tháng 06 năm 2019, trường THPT Tiên Lãng, tỉnh Hải Phòng tổ chức kỳ thi khảo sát chất lượng môn Toán năm học 2018 – 2019 dành cho toàn bộ học sinh khối 12 của nhà trường, nhằm kiểm tra khả năng kiến thức môn Toán 12 trước khi các em bước vào kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Đề khảo sát Toán 12 năm 2018 – 2019 trường THPT Tiên Lãng – Hải Phòng có mã đề 001, đề gồm 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án. [ads] Trích dẫn đề khảo sát Toán 12 năm 2018 – 2019 trường THPT Tiên Lãng – Hải Phòng : + Một khối đồ chơi gồm một khối nón (N) xếp chồng lên một khối trụ (T). Khối trụ (T) có bán kính đáy và chiều cao lần lượt là r1, h1. Khối nón (N) có bán kính đáy và chiều cao lần lượt là r2, h2 thỏa mãn r2 = 2/3.r1 và h2 = h1 (tham khảo hình vẽ bên). Biết rằng thể tích của toàn bộ khối đồ chơi bằng 124 cm3, thể tích khối nón (N) bằng? + Cho hàm số y = -x^4 + 2x^2 có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình -x^4 + 2x^2 = log_2 m có bốn nghiệm thực phân biệt. + Ông A vay ngân hàng 50 triệu đồng với lãi suất 0,67% /tháng. Ông ta muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông ta bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ mỗi tháng đều bằng nhau và bằng 3 triệu. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi bằng cách hoàn nợ đó, ông A cần trả ít nhất bao nhiêu tháng kể từ ngày vay đến lúc hoàn hết nợ ngân hàng (giả định trong thời gian này lãi suất không thay đổi).