Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kỹ thuật giải toán tích phân

Ebook gồm 582 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, hướng dẫn các kỹ thuật giải toán nguyên hàm, tích phân và ứng dụng; giúp học sinh ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, kỳ thi HSG Toán THPT. Mục lục tài liệu kỹ thuật giải toán tích phân: GIỚI THIỆU ĐÔI NÉT VỀ LỊCH SỬ. CHƯƠNG 1 . NGUYÊN HÀM – TÍCH PHÂN HÀM PHÂN THỨC HỮU TỶ. CHƯƠNG 2 . NGUYÊN HÀM – TÍCH PHÂN TỪNG PHẦN. 1. Giới thiệu. 2. Một số bài toán cơ bản. 3. Một số bài toán tổng hợp. CHƯƠNG 3 . CÁC BÀI TOÁN VỀ HÀM LƯỢNG GIÁC. 1. Giới thiệu các lý thuyết cần nhớ. 2. Các dạng toán và phương pháp. 3. Các bài toán biến đổi tổng hợp. CHƯƠNG 4 . NGUYÊN HÀM TÍCH PHÂN HÀM VÔ TỶ, CĂN THỨC. 1. Giới thiệu. 2. Các dạng toán. 3. Kỹ thuật lượng giác hóa. 4. Tổng kết. 5. Các bài toán tổng hợp. CHƯƠNG 5 . CÁC LOẠI TÍCH PHÂN ĐẶC BIỆT. 1. Tích phân liên kết. 2. Kỹ thuật đưa biểu thức vào dấu vi phân. 3. Kỹ thuật đánh giá hàm số. 4. Tích phân hàm trị tuyệt đối. 5. Tích phân có cận thay đổi. 6. Tích phân hàm phân nhánh. 7. Tích phân truy hồi và các bài toán liên quan dãy số. 8. Chứng minh đẳng thức tổ hợp. CHƯƠNG 6 . PHƯƠNG PHÁP ĐỔI CẬN ĐỔI BIẾN – HÀM ẨN. 1. Kỹ thuật đổi ẩn và tính chất các hàm đặc biệt. 2. Các bài toán phương trình hàm. 3. Bài tập tổng hợp. CHƯƠNG 7 . CÁC BÀI TOÁN VỀ PHƯƠNG TRÌNH VI PHÂN. 1. Bài toán liên quan tới tích. 2. Bài toán liên quan tới tổng. 3. Một số bài toán tổng hợp. CHƯƠNG 8 . CÁC ỨNG DỤNG CỦA TÍCH PHÂN. 1. Ứng dụng tính diện tích hình phẳng. 2. Ứng dụng tính thể tích. 3. Ứng dụng tích phân trong thực tiễn. CHƯƠNG 9 . BẤT ĐẲNG THỨC TÍCH PHÂN. 1. Phân tích bình phương. 2. Cân bằng hệ số và bất đẳng thức AM – GM. 3. Bất đẳng thức Cauchy – Schwarz cho tích phân.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm phương pháp vi phân tìm nguyên hàm
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp vi phân tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. Vi phân của hàm số. II. Một số công thức vi phân quan trọng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm mở đầu về nguyên hàm
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề mở đầu về nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. 1. Vi phân của hàm số. 2. Nguyên hàm. a. Định nghĩa. b. Định lý. c. Tính chất của nguyên hàm. d. Bảng công thức nguyên hàm. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
203 bài tập nguyên hàm - tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán
Tài liệu gồm 126 trang, được tổng hợp bởi thầy giáo Lương Anh Nhật, tuyển tập 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán: + THPT CHUYÊN LAM SƠN – THANH HÓA NĂM 2020 – 2021 LẦN 01: Cho hàm số f(x) xác định trên R, thỏa mãn f x x 2 1 và f 3 5. Giả sử phương trình f x 999 có hai nghiệm 1 x và 2 x. Tính tổng 1 2 S x x log log. + CHUYÊN QUANG TRUNG – BÌNH PHƯỚC NĂM 2020 – 2021 LẦN 02: Cho parabol 2 1P 6 y x cắt trục hoành tại hai điểm phân biệt AB và đường thẳng d y a 0 6 a. Xét parabol P2 đi qua AB và có đỉnh thuộc đường thẳng y a. Gọi 1 S là diện tích hình phẳng giới hạn bởi P1 và d; 2S là diện tích hình phẳng giới hạn bởi P2 và trục hoành (tham khảo hình vẽ). + CHUYÊN NGUYỄN DU – ĐĂKLẮK NĂM 2020 – 2021: Cho một viên gạch men có dạng hình vuông OABC như hình vẽ. Sau khi tọa độ hóa, ta có O A B C và hai đường cong lần lượt là đồ thị hàm số 3 y x và 3 y x. Tính diện tích phần tô đậm trên viên gạch men.
Toàn cảnh nguyên hàm - tích phân và ứng dụng trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 22 trang, tuyển chọn 159 câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm – tích phân và ứng dụng có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm – tích phân và ứng dụng) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020