Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề lũy thừa, mũ và logarit - Bùi Trần Duy Tuấn

Chuyên đề lũy thừa, mũ và logarit do thầy Bùi Trần Duy Tuấn biên soạn nhằm làm tư liệu cho các em lớp 12 ôn thi kỳ thi THPT Quốc gia tham khảo, giúp các em ôn lại kiến thức nhanh chóng và hiệu quả hơn. Tài liệu gồm 341 trang tuyển tập kiến thức, dạng toán, thủ thuật Casio và bài tập trắc nghiệm có đáp án và lời giải chi tiết chuyên đề lũy thừa, mũ và logarit trong chương trình Giải tích 12 chương 2. Chủ đề 1 . Lũy thừa  A. Kiến thức cần nắm I. Lũy thừa II. Căn bậc n B. Một số dạng toán liên quan về lũy thừa I. Viết lũy thừa với dạng số mũ hữu tỉ II. Tính giá trị của biểu thức III. Rút gọn biểu thức IV. So sánh các số C. Thủ thuật casio I. Phương pháp hệ số hóa biến II. Một số bài toán minh họa D. Bài tập trắc nghiệm  Chủ đề 2 . Logarit A. Kiến thức cơ bản B. Một số dạng toán về logarit  I. Tính, rút gọn giá trị của một biểu thức chứa logarit II. Biểu diễn một logarit theo các logarit cho trước C. Thủ thuật casio I. Phương pháp hệ số hóa biến II. Một số bài toán minh họa D. Bài tập trắc nghiệm Chủ đề 3 . Hàm số lũy thừa – mũ – logarit A. Kiến thức cần nắm I. Hàm lũy thừa II. Hàm số mũ III. Hàm số logarit B. Một số dạng toán thường gặp I. Tìm tập xác định của hàm số II. Tính đạo hàm của hàm số III. Tính đơn điệu của hàm số IV. Đồ thị của hàm số V. Tính giá trị biểu thức C. Bài tập trắc nghiệm [ads] Chủ đề 4 . Phương trình, hệ phương trình mũ – logarit A. Các phương pháp giải phương trình mũ và logarit I. Phương pháp đưa về cùng cơ số giải phương trình mũ và logarit II. Phương pháp đặt ẩn phụ giải phương trình mũ và logarit III. Phương pháp logarit hóa giải phương trình mũ và logarit IV. Phương pháp hàm số để giải phương trình mũ và logarit V. Phương trình chứa tham số B. Hệ phương trình mũ và logarit I. Phương pháp thế II. Phương pháp biến đổi tương đương III. Phương pháp đặt ẩn phụ IV. Phương pháp hàm số C. Thủ thuật casio giải phương trình mũ – logarit  I. Phương pháp sử dụng shift solve II. Phương pháp Calc III. Phương pháp sử dụng mode 7 D. Bài tập trắc nghiệm Chủ đề 5 . Bất phương trình mũ – logarit A. Phương pháp giải bất phương trình mũ và loagrit I. Phương pháp biến đổi tương đương cho bất phương trình mũ II. Phương pháp biến đổi tương đương cho bất phương trình logarit III. Phương pháp đặt ẩn phụ giải bất phương trình mũ và loagrit IV. Phương pháp logarit hóa giải bất phương trình mũ và logarit V. Phương pháp sử dụng tính chất của hàm số để giải bất phương trình mũ và logarit VI. Bất phương trình chứa tham số B. Thủ thuật casio giải bất phương trình mũ và loagrit I. Phương pháp 1. Calc theo chiều thuận II. Phương pháp 2 . Calc theo chiều nghịch III. Phương pháp 3. Lập bảng giá trị mode 7 IV. Phương pháp 4. Lược đồ con rắn C. Bài tập trắc nghiệm Chủ đề 6 . Các bài toán ứng dụng của hàm số mũ – logarit A. Các dạng toán ứng dụng của hàm số lũy thừa – mũ – logarit Một số khái niệm liên quan đến bài toán ngân hàng I. Lãi đơn 1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ 2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n 3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất 4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ, tìm vốn ban đầu II. Lãi kép 1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ 2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n 3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất 4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ. Tìm vốn ban đầu III. Bài toán vay trả góp – góp vốn IV. Bài toán lãi kép liên tục – công thức tăng trưởng mũ – ứng dụng Trong lĩnh vực đời sống xã hội 1. Bài toán lãi kép liên tục 2. Bài toán về dân số V. Ứng dụng trong lĩnh vực khoa học kỹ thuật B. Bài tập trắc nghiệm Xem thêm chuyên đề khác do thầy Bùi Trần Duy Tuấn biên soạn: + Chuyên đề hàm số – Bùi Trần Duy Tuấn + Chuyên đề số phức – Bùi Trần Duy Tuấn

Nguồn: toanmath.com

Đọc Sách

Bài giảng hàm số mũ và hàm số lôgarit Toán 11 Kết Nối Tri Thức Với Cuộc Sống
Tài liệu gồm 102 trang, được biên soạn bởi thầy giáo Lê Quang Xe, bao gồm tóm tắt lý thuyết, các dạng toán thường gặp, bài tập rèn luyện và bài tập trắc nghiệm chuyên đề hàm số mũ và hàm số lôgarit trong chương trình môn Toán 11 bộ sách Kết Nối Tri Thức Với Cuộc Sống. Chương 6 . HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 132. Bài 1 . LŨY THỪA VỚI SỐ MŨ THỰC 132. A TÓM TẮT LÍ THUYẾT 132. B CÁC DẠNG TOÁN THƯỜNG GẶP 135. + Dạng 1. Tính giá trị biểu thức chứa lũy thừa 135. + Dạng 2. Biến đổi, rút gọn biểu thức chứa lũy thừa 137. + Dạng 3. So sánh các lũy thừa 137. + Dạng 4. Điều kiện cho luỹ thừa, căn thức 139. C BÀI TẬP RÈN LUYỆN 140. D BÀI TẬP TRẮC NGHIỆM LẦN 1 149. Bài 2 . LÔGARIT 156. A TÓM TẮT LÍ THUYẾT 156. B CÁC DẠNG TOÁN THƯỜNG GẶP 159. + Dạng 1. Áp dụng tính chất để tính toán biểu thức chứa lôgarit 159. + Dạng 2. Áp dụng một số tính chất của phép tính lôgarit 160. + Dạng 3. Dạng toán liên quan đến đổi cơ số 162. + Dạng 4. Bài toán thực tế, liên môn 163. C BÀI TẬP RÈN LUYỆN 165. D BÀI TẬP TRẮC NGHIỆM LẦN 1 172. Bài 3 . HÀM SỐ MŨ, HÀM SỐ LOGARIT 180. A TÓM TẮT LÝ THUYẾT 180. B MỘT SỐ DẠNG TOÁN CƠ BẢN 182. + Dạng 1. Đồ thị hàm số mũ, hàm số lôgarit 182. + Dạng 2. Tìm tập xác định của hàm số mũ và hàm số lôgarit 183. + Dạng 3. Một số bài toán thực tế 184. C BÀI TẬP RÈN LUYỆN 185. D BÀI TẬP TRẮC NGHIỆM LẦN 1 193. Bài 4 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ VÀ LÔGARIT 200. A TÓM TẮT LÝ THUYẾT 200. B CÁC DẠNG TOÁN THƯỜNG GẶP 202. + Dạng 1. Giải phương trình mũ 202. + Dạng 2. Giải phương trình lôgarit 203. + Dạng 3. Giải bất phương trình mũ 204. + Dạng 4. Giải bất phương trình lôgrit 205. + Dạng 5. Một số bài toán thực tế 206. C BÀI TẬP RÈN LUYỆN 208. D BÀI TẬP TRẮC NGHIỆM LẦN 1 217. Bài 5 . BÀI TẬP CUỐI CHƯƠNG VI 228. A BÀI TẬP TRẮC NGHIỆM 228. B BÀI TẬP TỰ LUẬN 230.
Phương pháp hàm đặc trưng giải PT - BPT mũ - lôgarit - Đặng Việt Đông
Tài liệu gồm 133 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, hướng dẫn phương pháp hàm đặc trưng giải phương trình và bất phương trình mũ và lôgarit, hỗ trợ học sinh khá – giỏi trong quá trình ôn thi học sinh giỏi và tốt nghiệp THPT môn Toán; các bài toán trong tài liệu có đáp án và lời giải chi tiết. PHƯƠNG PHÁP HÀM ĐẶC TRƯNG GIẢI PT – BPT MŨ – LÔGARIT: Phương pháp hàm số đặc trưng thường xuyên xuất hiện trong đề thi THPT Quốc Gia và đề thi tốt nghiệp THPT, nó cũng là một trong những câu phân loại của đề: Câu 47 mã đề 101 – THPT QG năm 2017; Câu 35 đề tham khảo – BGD&ĐT năm 2018. Câu 46 mã đề 101 – THPT QG năm 2018; Câu 47 đề tham khảo – BGD&ĐT năm 2020; Câu 47 đề tham khảo – BGD&ĐT năm 2021. I – CƠ SỞ LÝ THUYẾT. II – ÁP DỤNG. + Dạng 1: Phương pháp hàm đặc trưng giải phương trình và bất phương trình mũ không chứa tham số 2. + Dạng 2: Phương pháp hàm đặc trưng giải phương trình và bất phương trình mũ chứa tham số 18. + Dạng 3: Phương pháp hàm đặc trưng giải phương trình và bất phương trình lôgarit không chứa tham số 28. + Dạng 4: Phương pháp hàm đặc trưng giải phương trình và bất phương trình lôgarit chứa tham số 54. + Dạng 5: Phương pháp hàm đặc trưng giải phương trình và bất phương trình có tổ hợp mũ – lôgarit không chứa tham số 73. + Dạng 6: Phương pháp hàm đặc trưng giải phương trình và bất phương trình có tổ hợp mũ – lôgarit chứa tham số 102.
Chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 360 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. Dạng 2. Biến đổi logarit. Dạng 3. Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit. Dạng 4. Bài tập về phương trình mũ – logarit số 01. Dạng 5. Bài tập về phương trình mũ – logarit số 02. Dạng 6. Phương trình mũ – logarit chứa tham số 01. Dạng 7. Phương trình mũ – logarit chứa tham số 02. Dạng 8. Biện luận nghiệm phương trình mũ – logarit. Dạng 9. GTNN – GTLN của hàm số mũ – logarit. Dạng 10. Bài toán liên quan đến hàm đặc trưng. Dạng 11. Bài toán tìm cặp số nguyên thỏa mãn. Dạng 12. Bài toán lãi kép. Dạng 13. Bài toán liên quan đến tăng trưởng. Dạng 14. Mũ – logarit trong đề thi của Bộ Giáo dục và Đào tạo.
Bài toán min - max mũ và logarit
Tài liệu gồm 26 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề Bài toán min – max mũ và logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. 1. Công thức mũ – lôgarit. 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(x) trên D (f(x) xác định và liên tục trên D). Phương pháp giải: – Bước 1: Tính y fx tìm tất cả các nghiệm i x của phương trình f x 0 và các điểm αi làm cho f x không xác định. – Bước 2: + Trường hợp 1: D ab. Tính các giá trị fa fb fx f i i α. Với min min max max i i D fx fa fb fx. + Trường hợp 2: D ab. Lập bảng biến thiên suy ra min – max. Chú ý: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số đơn điệu trên đoạn [a;b]. Nếu hàm số y fx đồng biến với min max a b x ab y f a y f b. Nếu hàm số y fx nghịch biến với min max a b x ab y f b y f a. 3. Các bất đẳng thức quen thuộc. + Bất đẳng thức AM – GM cho hai số thực dương. Mở rộng bất đẳng thức AM – GM cho ba số thực dương. + Bất đẳng thức Bunhiacopxki. Bất đẳng thức Bunhiacopxki dạng phân thức. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.