Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào sáng Chủ Nhật ngày 12 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Giá bán một cái bánh cùng loại ở hai cửa hàng A và B đều là 15 000 đồng, nhưng mỗi cửa hàng áp dụng hình thức khuyến mãi khác nhau. Cửa hàng A: đối với 3 cái bánh đầu tiên, giá mỗi cái là 15 000 đồng và từ cái bánh thứ tư trở đi khách hàng chỉ phải trả 75% giá bán. Cửa hàng B: cứ mua 3 cái bánh thì được tặng thêm 1 cái bánh cùng loại. Bạn Hằng cần đúng 13 cái bánh để tổ chức sinh nhật thì bạn ấy nên mua bánh ở cửa hàng nào để tiết kiệm và tiết kiệm được bao nhiêu tiền so với cửa hàng kia? + Một vận động viên khi leo núi nhận thấy rằng càng lên cao thì nhiệt độ không khí càng giảm. Mối liên hệ giữa nhiệt độ không khí T và độ cao h (so với chân núi) được cho bởi hàm số T = a.h + b có đồ thị như hình vẽ bên (nhiệt độ T tính theo °C và độ cao tính theo mét). Tại chân núi, người đó đo được nhiệt độ không khí là 23°C và trung bình cứ lên cao 100 m thì nhiệt độ giảm 0,6°C. a) Xác định a và b trong công thức trên. b) Bạn Minh đang leo núi và dùng nhiệt kế đo được nhiệt độ không khí tại vị trí dừng chân là 15,8°C. Hỏi bạn Minh đang ở độ cao bao nhiêu mét so với chân núi? + Đại hội Thể thao Đông Nam Á – SEA Games (South East Asian Games) là sự kiện thể thao được tổ chức 2 năm một lần với sự tham gia của các vận động viên ở trong khu vực Đông Nam Á. Việt Nam là chủ nhà của SEA Games 31 diễn ra từ ngày 12/5/2022 đến ngày 23/5/2022. Ở môn bóng đá nam, một bảng đấu gồm có 5 đội A, B, C, D, E thi đấu theo thể thức vòng tròn một lượt (mỗi đội thi đấu đúng một trận với các đội còn lại). Trong mỗi trận đấu, đội thắng được 3 điểm đội hòa được 1 điểm và đội thua được 0 điểm. a) Hỏi có tất cả bao nhiêu trận đấu đã diễn ra ở bảng đấu trên? b) Khi kết thúc bảng đấu, các đội A, B, C, D, E lần lượt có điểm số là 10, 9, 6, 4, 0. Hỏi có bao nhiêu trận hòa và cho biết đó là trận hòa giữa các đội nào (nếu có)?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi mã đề 117 gồm 04 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị phát đề).
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Một người đi xe máy từ địa điểm A đến địa điểm B trên quãng đường 100 km. Khi từ B về A người đó đã giảm vận tốc 10 km/h so với lúc đi nên thời gian lúc về nhiều hơn thời gian lúc đi là 30 phút. Tính vận tốc của người đó lúc đi. + Từ điểm M nằm bên ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB của (O) (A và B là hai tiếp điểm). Một đường thẳng qua M và không đi qua O cắt (O) tại hai điểm C và D (C nằm giữa M, D và A thuộc cung nhỏ CD). a) Chứng minh tứ giác AMBO nội tiếp. b) Chứng minh MA2 = MC.MD. c) Gọi I là giao điểm của AB và MO. Chứng minh tứ giác CDOI nội tiếp. d) Kẻ đường thẳng qua D vuông góc với MO cắt (O) tại E khác D. Chứng minh ba điểm C, I, E thẳng hàng. + Với các số thực x, y, z thỏa mãn x >= 1, y >= 1, z >= 1 và x2 + 2y2 + 3z2 = 15. Tìm giá trị nhỏ nhất của biểu thức P = x + y + z.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Lạng Sơn : + Cho phương trình bậc hai với tham số m: x2 – 2(m + 1)x + 2m – 3 = 0 (1). 1. Giải phương trình (1) khi m = 0. 2. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1 và x2 với mọi m. Tìm tất cả các giá trị của m thỏa mãn: x1 + x2 – 2x1x2 = 1. + Giải các phương trình và hệ phương trình sau. + Cho đường tròn (O) đường kính AB. Dây cung MN vuông góc với AB, (AM < BM). Hai đường thẳng BM và NA cắt nhau tại K. Gọi H là chân đường vuông góc kẻ từ K đến đường thẳng AB. a. Chứng minh rằng tứ giác AHKM nội tiếp trong một đường tròn. b. Chứng minh rằng NB.HK = AN.HB. c. Chứng minh HM là tiếp tuyến của đường tròn (O).
Đề vào lớp 10 môn Toán (chuyên) 2022 - 2023 trường chuyên Nguyễn Trãi - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương. Trích dẫn đề vào lớp 10 môn Toán (chuyên) 2022 – 2023 trường chuyên Nguyễn Trãi – Hải Dương : + Cho đa thức P(x) với các hệ số nguyên thỏa mãn P(2021).P(2022) = 2023. Chứng minh rằng biểu thức P(x) – 2024 không có nghiệm nguyên. + Cho đường tròn (O) và dây cung AB không đi qua tâm O. Gọi M là điểm chính giữa của cung nhỏ AB; D là một điểm thay đổi trên cung lớn AB (D khác A và B); DM cắt AB tại C. a. Chứng minh rằng MB.BD = MD.BC; b. Chứng minh rằng MB là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD và khi điểm D thay đổi thì tâm đường tròn ngoại tiếp tam giác BCD nằm trên một đường thẳng cố định. + Cho hình thoi ABCD có AB = 2. Gọi R1 và R2 lần lượt là bán kính đường tròn ngoại tiếp các giác ABC và ABD. Chứng minh rằng R1 + R2 >= 2.