Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông chuyên Toán năm học 2022 – 2023 của sở GD Đào tạo Đắk Lắk. Kỳ thi sẽ diễn ra vào thứ Năm ngày 16 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Đắk Lắk: Cho phương trình x² – (2m – 1)x + m² – m – 2 = 0 với m là tham số. Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x₁ và x₂ thỏa mãn x₁³ + x₂³ – 5x₁x₂ = 10m + 15. Cho hình chữ nhật ABCD có chiều dài bằng 47cm, chiều rộng bằng 43cm. Chứng minh rằng trong số 2022 điểm bất kì nằm trong hình chữ nhật ABCD luôn tìm được hai điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 2cm. Cho đường tròn (O; R) và hai điểm P, Q nằm ngoài (O) sao cho góc POQ vuông, PQ không cắt (O). Kẻ hai tiếp tuyến PA, PB với đường tròn (O) (A, B là hai tiếp điểm; tia PA nằm giữa hai tia PQ và PO). Hai cát tuyến PDC, QEC thay đổi của (O) cùng đi qua C (D nằm giữa P và C; E nằm giữa Q và C). Tia PE cắt đường tròn tại điểm thứ hai F (F khác E). H là giao điểm của AB và OP. Chứng minh rằng: 1) Tích PE.PF không đổi. 2) AHE = AHF. 3) Đường tròn ngoại tiếp tam giác PDF luôn đi qua một điểm cố định. Hy vọng rằng đề thi này sẽ giúp các em rèn luyện và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2022 cụm trường THCS quận Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm 2022 cụm trường THCS trực thuộc UBND quận Ba Đình: THCS Nguyễn Công Trứ, THCS Nguyễn Trãi, THCS Ba Đình, THCS Thống Nhất, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 cụm trường THCS quận Ba Đình – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trong phong trào thi đua trồng cây dịp đầu năm mới, lớp 9A đặt kế hoạch trồng 300 cây xanh cùng loại, mỗi học sinh trồng số cây như nhau. Đến đợt lao động, do ảnh hưởng của dịch COVID-19 nên 5 bạn không tham gia trồng cây được. Vì vậy mỗi bạn còn lại đã trồng thêm 2 cây để đảm bảo hoàn thành kế hoạch đặt ra. Tìm số học sinh của lớp 9A. + Người ta nhấn chìm hoàn toàn một tượng đá nhỏ vào một lọ thủy tinh có nước dạng hình trụ. Diện tích đáy lọ thủy tinh là 12,8cm2. Nước trong lọ dâng lên thêm 8,5cm. Tính thể tích của tượng đá? + Với hai số thực không âm thỏa mãn. Tìm giá trị lớn nhất của biểu thức.
Đề thi thử Toán vào lớp 10 lần 4 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 4 năm học 2022 – 2023 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 4 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tháng thứ nhất hai tổ sản xuất được 500 sản phẩm. Sang tháng thứ hai, do cải tiến kĩ thuật, tổ 1 làm vượt mức 10%, tổ 2 làm vượt mức 15% so với tháng thứ nhất. Vì vậy, tháng thứ hai cả hai tổ đã làm được 564 sản phẩm. Hỏi trong tháng thứ nhất mỗi tổ sản xuất được bao nhiêu sản phẩm? + Trục lăn của một cái lăn sơn có dạng một hình trụ. Đường kính của đường tròn đáy là 8cm, chiều dài trục lăn là 30cm. Sau khi lăn được 10 vòng thì trục lăn tạo trên sân phẳng một diện tích là bao nhiêu? (lấy 3,14). + Cho tam giác ABC có ba góc nhọn, đường cao AD. Đường tròn (O) đường kính BC cắt AC tại E, AD cắt BE tại H. 1) Chứng minh CDHE là tứ giác nội tiếp. 2) Gọi giao điểm của CH với AB là F. Chứng minh F thuộc đường tròn (O) và DA là phân giác của góc EDF. 3) Kẻ các tiếp tuyến AM, AN với (O) (M, N là tiếp điểm), AO cắt MN tại K, đoạn thẳng AH cắt (O) tại P. Gọi I là tâm đường tròn ngoại tiếp OPK. Chứng minh B, C, I thẳng hàng.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Đặng Tấn Tài - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 trường THCS Đặng Tấn Tài, thành phố Thủ Đức, thành phố Hồ Chí Minh. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THCS Đặng Tấn Tài – TP HCM : + Theo âm lịch, một chu kì quay của Mặt Trăng quanh Trái Đất là khoảng 29,53 ngày nên một năm âm lịch chỉ có khoảng 354 ngày (làm tròn). Do vậy, cứ sau một vài năm âm lịch thì người ta phải bổ sung một tháng (tháng nhuận) để đảm bảo năm âm lịch tương đối phù hợp với chu kì của thời tiết. Cách tính năm nhuận âm lịch như sau: Lấy số năm chia cho 19, nếu số dư là một trong các số: 0; 3; 6; 9; 11; 14; 17 thì năm âm lịch đó có tháng nhuận. Ví dụ: Năm 2017 là năm âm lịch có tháng nhuận vì 2017 chia 19 dư 3. Năm 2015 không phải năm nhuận âm lịch vì 2015 chia cho 19 dư 1.a) Hãy sử dụng quy tắc trên để xác định năm 1995 và năm 2030 có phải năm nhuận âm lịch hay không? b) Năm nhuận dương lịch là năm chia hết cho 4. Ngoài ra, những năm chia hết cho 100 chỉ được coi là năm nhuận dương lịch nếu chúng cũng chia hết cho 400 (ví dụ 1600 là năm nhuận dương lịch nhưng 1700 không là năm nhuận dương lịch). Hỏi trong các năm từ 1895 đến 1930, năm nào vừa là năm nhuận âm lịch, vừa là năm nhuận dương lịch. + Càng lên cao không khí càng loãng nên áp suất khí quyển càng giảm. Với những độ cao không lớn lắm thì ta có công thức áp suất khí quyển tương ứng với độ cao so với mực nước biển là một hàm số bậc nhất p = a.h + b, trong đó h(m) là độ cao so với mực nước biển, p(mmHg) là áp suất ứng với độ cao h. Biết rằng, tại mặt nước biển thì áp suất là 760mmHg và cứ lên cao 100m thì áp suất giảm 8mmHg. a) Xác định hệ số a và b. b) Thành phố Đà Lạt cao 1500m so với mực nước biển thì áp suất khí quyển tại Đà Lạt là bao nhiêu? + Lớp 9A dự định tổ chức liên hoan lớp cuối năm, trong phần nước uống cần chuẩn bị 42 ly trà sữa truyền thống. Để tiết kiệm chi phí lớp 9A đã tìm hiểu giá của hai cửa hàng A và B như sau: cửa hàng A, mua năm ly đồ uống bất kì thì sẽ được tặng một ly (cùng loại) và nếu hóa đơn trên 400000 đồng thì được giảm thêm 10% trên hóa đơn. Cửa hàng B chỉ khuyến mãi khi đặt hàng qua app GF thì sẽ được giảm 10% mỗi ly khi mua 3 ly trở lên và nếu mua từ 10 ly trở lên thì giảm 25% mỗi ly so với giá niêm yết và phí giao hàng thì khách hàng trả theo khoảng cách từ cửa hàng đến nơi nhận hàng. Hỏi Lớp 9A nên mua ở cửa hàng nào sẽ tiết kiệm hơn và tiết kiệm hơn được bao nhiêu tiền? Biết giá niêm yết một ly trà sữa truyền thống ở cả hai cửa hàng là như nhau và đều là 30000 đồng, khoảng cách từ địa điểm liên hoan đến cửa hàng B là 2,3km. Phí giao hàng được tính theo bảng sau: Khoảng cách Giá tiền (đồng) Dưới 10 km 25000 Từ 10km đến 20km 27500 Từ 20km đến 40km 30000 Trên 40km 5% giá trị đơn hàng.
Đề thi vào 10 môn Toán năm 2022 - 2023 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; đề thi dùng chung cho tất cả các thí sinh (đề thi vòng 1 / đề Toán điều kiện); kỳ thi được diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022. Trích dẫn đề thi vào 10 môn Toán năm 2022 – 2023 trường chuyên Lam Sơn – Thanh Hóa : + Cho hai điểm M, N thuộc đồ thị hàm số y = -1/2.x2 và có hoành độ lần lượt là xM = -2; xN = 1. Xác định a, b để đường thẳng (d): y = ax + b đi qua hai điểm M, N. + Cho phương trình x2 – 2(m + 2)x + m2 + 2m + 4 = 0 (m là tham số). 1. Giải phương trình khi m = 2. 2. Tìm m để phương trình có hai nghiệm phân biệt x1 và x2 thỏa mãn |x1| – |x2| = 6. + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi M, N lần lượt là trung điểm của các cạnh BC và AC. Đường thẳng MN cắt cung nhỏ BC của đường tròn (O) tại P. 1. Chứng minh tứ giác OMCN nội tiếp. 2. Gọi D là điểm bất kỳ trên cạnh AB (D khác A, B). Đường tròn ngoại tiếp tam giác BPD cắt cạnh BC tại điểm I khác B; K là giao điểm của hai đường thẳng DI và AC. Chứng minh PK.PB = PC.PD. 3. Gọi G là giao điểm khác P của AP với đường tròn ngoại tiếp tam giác BPD, đường thẳng IG cắt AB tại E. Chứng minh rằng khi D di chuyển trên cạnh AB thì tỉ số AD/AE không đổi.